Skip to main content
Top
Published in: Journal of Electronic Materials 4/2021

29-01-2021 | Original Research Article

Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells

Authors: Aykut Caglar, Hilal Kivrak, Nahit Aktas, Ali Osman Solak

Published in: Journal of Electronic Materials | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, TiO2 nanotubes (TNT) and carbon-doped TiO2 nanotubes (C-TNT) were produced via the anodization method. Carbon doping was performed on TNT in a tubular oven employing two different 15 cm3/min total flow rates with varying compositions of acetylene (C2H2) and argon (Ar) as VC2H2/Ar = 7/93 (1 cm3/min C2H2 + 14 cm3/min Ar) for C-TNT (7:93) and VC2H2/Ar = 33/67 (5 cm3/min C2H2 + 10 cm3/min Ar) for C-TNT (33:67). The synthesized C-doped TNT was characterized by x-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). XRD, Raman spectra, and SEM results reveal that a carbon film structure was formed on the TNT surface. In addition, the electronic structure of TNT changed with doping of carbon on the TNT surface. These carbon-doped TNTs were employed as catalysts for the photocatalytic oxidation of glucose (GA). Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements were carried out to investigate the glucose electro-oxidation activity of the carbon-doped TNTs in the dark and under UV illumination (λ = 354 nm). C-TNT (7:93) exhibited the highest glucose electro-oxidation activity under the dark and UV illumination compared to C-TNT (33:67) and TNT. The glucose electro-oxidation (GAEO) current density on C-TNT (7:93) improved significantly under UV illumination compared to glucose electro-oxidation activity obtained in the dark. C-TNT (7:93) enhanced glucose electro-oxidation activity and stability under UV illumination. This electrode production method is promising for the design of photocatalytic glucose fuel cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Ulas, A. Kivrak, N. Aktas, and H. Kivrak, Fuller. Nanotub. Carbon Nanostructures 27, 545 (2019).CrossRef B. Ulas, A. Kivrak, N. Aktas, and H. Kivrak, Fuller. Nanotub. Carbon Nanostructures 27, 545 (2019).CrossRef
2.
go back to reference H. Kivrak, S. Kuliyev, H. Tempel, J. Schneider, and D. Uner, Int. J. Chem. React. Eng. 9, 1 (2011). H. Kivrak, S. Kuliyev, H. Tempel, J. Schneider, and D. Uner, Int. J. Chem. React. Eng. 9, 1 (2011).
4.
go back to reference B. Ulas, A. Caglar, O. Sahin, and H. Kivrak, J. Colloid Interface Sci. 532, 47 (2018).CrossRef B. Ulas, A. Caglar, O. Sahin, and H. Kivrak, J. Colloid Interface Sci. 532, 47 (2018).CrossRef
5.
7.
go back to reference O. Sahin, D. Duzenli, and H. Kivrak, Energ. Source. Part A. 38, 628 (2016).CrossRef O. Sahin, D. Duzenli, and H. Kivrak, Energ. Source. Part A. 38, 628 (2016).CrossRef
9.
go back to reference H. Kivrak, M. Can, H. Duru, and O. Sahin, Int. J. Chem. React. Eng. 12, 1 (2014).CrossRef H. Kivrak, M. Can, H. Duru, and O. Sahin, Int. J. Chem. React. Eng. 12, 1 (2014).CrossRef
10.
go back to reference H.C. Kazici, F. Yildiz, M.S. Izgi, B. Ulas, and H. Kivrak, Int. J. Hydrog. Energy 44, 10561 (2019).CrossRef H.C. Kazici, F. Yildiz, M.S. Izgi, B. Ulas, and H. Kivrak, Int. J. Hydrog. Energy 44, 10561 (2019).CrossRef
11.
go back to reference A. Caglar, T. Sahan, M.S. Cogenli, A.B. Yurtcan, N. Aktas, and H. Kivrak, Int. J. Hydrog. Energy 43, 11002 (2018).CrossRef A. Caglar, T. Sahan, M.S. Cogenli, A.B. Yurtcan, N. Aktas, and H. Kivrak, Int. J. Hydrog. Energy 43, 11002 (2018).CrossRef
12.
go back to reference C. Avci, F. Cicek, H.C. Kazici, A. Kivrak, and H. Kivrak, Int. J. Nano Dimens. 9, 15 (2018). C. Avci, F. Cicek, H.C. Kazici, A. Kivrak, and H. Kivrak, Int. J. Nano Dimens. 9, 15 (2018).
13.
go back to reference A. Caglar, B. Ulas, M.S. Cogenli, A.B. Yurtcan, and H. Kivrak, J. Electroanal. Chem. 850, 113402 (2019).CrossRef A. Caglar, B. Ulas, M.S. Cogenli, A.B. Yurtcan, and H. Kivrak, J. Electroanal. Chem. 850, 113402 (2019).CrossRef
14.
go back to reference A. Caglar, B. Ulas, O. Sahin, and H. Kivrak, Int. J. Energy Res. 43, 8204 (2019). A. Caglar, B. Ulas, O. Sahin, and H. Kivrak, Int. J. Energy Res. 43, 8204 (2019).
15.
go back to reference B. Ulas, A. Caglar, S. Yilmaz, U. Ecer, Y. Yilmaz, T. Sahan, and H. Kivrak, Int. J. Energy Res. 43, 8985 (2019).CrossRef B. Ulas, A. Caglar, S. Yilmaz, U. Ecer, Y. Yilmaz, T. Sahan, and H. Kivrak, Int. J. Energy Res. 43, 8985 (2019).CrossRef
16.
17.
go back to reference I.M. Al-Akraa, A.M. Mohammad, M.S. El-Deab, and B.E. El-Anadouli, Int. J. Electrochem. Sci. 10, 3282 (2015). I.M. Al-Akraa, A.M. Mohammad, M.S. El-Deab, and B.E. El-Anadouli, Int. J. Electrochem. Sci. 10, 3282 (2015).
18.
go back to reference M. Carmo, V.A. Paganin, J.M. Rosolen, and E.R. Gonzalez, J. Power Sources 142, 169 (2005).CrossRef M. Carmo, V.A. Paganin, J.M. Rosolen, and E.R. Gonzalez, J. Power Sources 142, 169 (2005).CrossRef
19.
20.
go back to reference H.D. Du, B.H. Li, F.Y. Kang, R.W. Fu, and Y.Q. Zeng, Carbon 45, 429 (2007).CrossRef H.D. Du, B.H. Li, F.Y. Kang, R.W. Fu, and Y.Q. Zeng, Carbon 45, 429 (2007).CrossRef
21.
go back to reference E. Auer, A. Freund, J. Pietsch, and T. Tacke, Appl. Catal. A-Gen. 173, 259 (1998).CrossRef E. Auer, A. Freund, J. Pietsch, and T. Tacke, Appl. Catal. A-Gen. 173, 259 (1998).CrossRef
22.
go back to reference C. Rice, S. Ha, R.I. Masel, and A. Wieckowski, J. Power Sources 115, 229 (2003).CrossRef C. Rice, S. Ha, R.I. Masel, and A. Wieckowski, J. Power Sources 115, 229 (2003).CrossRef
23.
go back to reference M. Takahashi, T. Mori, A. Vinu, D.R. Ou, H. Kobayashi, and J. Drennan, Adv. Appl. Ceram. 107, 57 (2008).CrossRef M. Takahashi, T. Mori, A. Vinu, D.R. Ou, H. Kobayashi, and J. Drennan, Adv. Appl. Ceram. 107, 57 (2008).CrossRef
24.
go back to reference A.K. Shukla, M.K. Ravikumar, and K.S. Gandhi, J. Solid State Electrochem. 2, 117 (1998).CrossRef A.K. Shukla, M.K. Ravikumar, and K.S. Gandhi, J. Solid State Electrochem. 2, 117 (1998).CrossRef
25.
go back to reference K.M. McGrath, G.K.S. Prakash, and G.A. Olah, J. Ind. Eng. Chem. 10, 1063 (2004). K.M. McGrath, G.K.S. Prakash, and G.A. Olah, J. Ind. Eng. Chem. 10, 1063 (2004).
26.
go back to reference A. Bayrakceken, U. Kitkamthorn, M. Aindow, and C. Erkey, Scripta Mater. 56, 101 (2007).CrossRef A. Bayrakceken, U. Kitkamthorn, M. Aindow, and C. Erkey, Scripta Mater. 56, 101 (2007).CrossRef
27.
go back to reference B. Guvenatam, B. Ficicilar, A. Bayrakceken, and I. Eroglu, Int. J. Hydrog. Energy 37, 1865 (2012).CrossRef B. Guvenatam, B. Ficicilar, A. Bayrakceken, and I. Eroglu, Int. J. Hydrog. Energy 37, 1865 (2012).CrossRef
28.
go back to reference A. Bayrakceken, B. Cangul, L.C. Zhang, M. Aindow, and C. Erkey, Int. J. Hydrog. Energy 35, 11669 (2010).CrossRef A. Bayrakceken, B. Cangul, L.C. Zhang, M. Aindow, and C. Erkey, Int. J. Hydrog. Energy 35, 11669 (2010).CrossRef
29.
go back to reference X. Min, B. Sun, S. Chen, M.H. Fang, X.W. Wu, Y.G. Liu, A. Abdelkader, Z.H. Huang, T. Liu, K. Xi, and R.V. Kumar, Energy Storage Mater. 16, 597 (2019).CrossRef X. Min, B. Sun, S. Chen, M.H. Fang, X.W. Wu, Y.G. Liu, A. Abdelkader, Z.H. Huang, T. Liu, K. Xi, and R.V. Kumar, Energy Storage Mater. 16, 597 (2019).CrossRef
30.
go back to reference A. Kivrak, O.F. Er, H. Kivrak, Y. Topal, M. Kus, and Y. Camlisoy, Opt. Mater. 73, 206 (2017).CrossRef A. Kivrak, O.F. Er, H. Kivrak, Y. Topal, M. Kus, and Y. Camlisoy, Opt. Mater. 73, 206 (2017).CrossRef
31.
go back to reference A. Kivrak, H. Calis, Y. Topal, H. Kivrak, and M. Kus, Sol. Energy Mater. Sol. Cell. 161, 31 (2017).CrossRef A. Kivrak, H. Calis, Y. Topal, H. Kivrak, and M. Kus, Sol. Energy Mater. Sol. Cell. 161, 31 (2017).CrossRef
32.
go back to reference A. Kivrak, C. Zobi, Y. Torlak, Y. Camlisoy, M. Kus, and H. Kivrak, Appl. Organomet. Chem. 32, e4512 (2018).CrossRef A. Kivrak, C. Zobi, Y. Torlak, Y. Camlisoy, M. Kus, and H. Kivrak, Appl. Organomet. Chem. 32, e4512 (2018).CrossRef
33.
go back to reference V.M. Aroutiounian, V.M. Arakelyan, and G.E. Shahnazaryan, Sol. Energy 78, 581 (2005).CrossRef V.M. Aroutiounian, V.M. Arakelyan, and G.E. Shahnazaryan, Sol. Energy 78, 581 (2005).CrossRef
36.
go back to reference M. Hambourger, G. Kodis, M.D. Vaughn, G.F. Moore, D. Gust, A.L. Moore, and T.A. Moore, Dalton Trans. 45, 9979 (2009).CrossRef M. Hambourger, G. Kodis, M.D. Vaughn, G.F. Moore, D. Gust, A.L. Moore, and T.A. Moore, Dalton Trans. 45, 9979 (2009).CrossRef
37.
go back to reference Y. Jeyashree, Y. Sukhi, A.V. Juliet, S.L. Jame, and S. Indirani, Mater. Sci. Semicond. Process. 107, 104782 (2020).CrossRef Y. Jeyashree, Y. Sukhi, A.V. Juliet, S.L. Jame, and S. Indirani, Mater. Sci. Semicond. Process. 107, 104782 (2020).CrossRef
38.
go back to reference R. Mirzanamadi, C.E. Hagentoft, and P. Johansson, Renew. Energy 147, 447 (2020).CrossRef R. Mirzanamadi, C.E. Hagentoft, and P. Johansson, Renew. Energy 147, 447 (2020).CrossRef
39.
go back to reference K. Rashid, K. Mohammadi, and K. Powell, J. Clean. Prod. 248, 119193 (2020).CrossRef K. Rashid, K. Mohammadi, and K. Powell, J. Clean. Prod. 248, 119193 (2020).CrossRef
40.
go back to reference M.H. Khanmirzaei, S. Ramesh, and K. Ramesh, J. Nanosci. Nanotechnol. 20, 2423 (2020).CrossRef M.H. Khanmirzaei, S. Ramesh, and K. Ramesh, J. Nanosci. Nanotechnol. 20, 2423 (2020).CrossRef
41.
go back to reference P.B.L. Neto, O.R. Saavedra, and D.Q. Oliveira, Renew. Energy 147, 339 (2020).CrossRef P.B.L. Neto, O.R. Saavedra, and D.Q. Oliveira, Renew. Energy 147, 339 (2020).CrossRef
42.
go back to reference J.S. Lacerda and J. van den Bergh, Renew. Sustain. Energy Rev. 118, 2 (2020). J.S. Lacerda and J. van den Bergh, Renew. Sustain. Energy Rev. 118, 2 (2020).
43.
go back to reference C.Y. Chou, C.P. Lee, R. Vittal, and K.C. Ho, J. Power Sources 196, 6595 (2011).CrossRef C.Y. Chou, C.P. Lee, R. Vittal, and K.C. Ho, J. Power Sources 196, 6595 (2011).CrossRef
44.
go back to reference R. Hahn, T. Stergiooulus, J.M. Macak, D. Tsoukleris, A.G. Kontos, S.P. Albu, D. Kim, A. Ghicov, J. Kunze, P. Falaras, and P. Schmuki, Phys. Status Solidi Rapid Res. Lett. 1, 135 (2007).CrossRef R. Hahn, T. Stergiooulus, J.M. Macak, D. Tsoukleris, A.G. Kontos, S.P. Albu, D. Kim, A. Ghicov, J. Kunze, P. Falaras, and P. Schmuki, Phys. Status Solidi Rapid Res. Lett. 1, 135 (2007).CrossRef
45.
go back to reference Q.L. Liu, Z.Y. Zhao, R.D. Zhao, and J.H. Yi, J. Alloys Compd. 819, 153032 (2020).CrossRef Q.L. Liu, Z.Y. Zhao, R.D. Zhao, and J.H. Yi, J. Alloys Compd. 819, 153032 (2020).CrossRef
47.
go back to reference M.Y. Abdelsalam, H.M. Teamah, M.F. Lightstone, and J.S. Cotton, Renew. Energy 147, 77 (2020).CrossRef M.Y. Abdelsalam, H.M. Teamah, M.F. Lightstone, and J.S. Cotton, Renew. Energy 147, 77 (2020).CrossRef
48.
go back to reference M.J. Cao, Q.S. Xu, X.Y. Qin, and J.L. Cai, Int. J. Electr. Power Energy Syst. 115, 105471 (2020).CrossRef M.J. Cao, Q.S. Xu, X.Y. Qin, and J.L. Cai, Int. J. Electr. Power Energy Syst. 115, 105471 (2020).CrossRef
49.
go back to reference S.Q. Hao, A.T.H. Kuah, C.D. Rudd, K.H. Wong, N.Y.G. Lai, J.N. Mao, and X.L. Liu, Sci. Total Environ. 702, 135054 (2020).CrossRef S.Q. Hao, A.T.H. Kuah, C.D. Rudd, K.H. Wong, N.Y.G. Lai, J.N. Mao, and X.L. Liu, Sci. Total Environ. 702, 135054 (2020).CrossRef
50.
go back to reference K.A. Naik, C.P. Gupta, and E. Fernandez, Int. J. Electr. Power Energy Syst. 115, 105468 (2020).CrossRef K.A. Naik, C.P. Gupta, and E. Fernandez, Int. J. Electr. Power Energy Syst. 115, 105468 (2020).CrossRef
51.
go back to reference K. Suleimenov, B. Sarsembayev, B. DucHongPhuc, and T.D. Do, Wind Energy 23, 1026 (2020).CrossRef K. Suleimenov, B. Sarsembayev, B. DucHongPhuc, and T.D. Do, Wind Energy 23, 1026 (2020).CrossRef
52.
go back to reference T.T. Guo, Y.B. Liu, J.B. Zhao, Y.W. Zhu, and J.Y. Liu, Int. J. Electr. Power Energy Syst. 116, 105579 (2020).CrossRef T.T. Guo, Y.B. Liu, J.B. Zhao, Y.W. Zhu, and J.Y. Liu, Int. J. Electr. Power Energy Syst. 116, 105579 (2020).CrossRef
53.
go back to reference M. Elkazaz, M. Sumner, and D. Thomas, Int. J. Electr. Power Energy Syst. 115, 105483 (2020).CrossRef M. Elkazaz, M. Sumner, and D. Thomas, Int. J. Electr. Power Energy Syst. 115, 105483 (2020).CrossRef
54.
go back to reference Z.N. Wang, H. Wang, S. Ji, X.Y. Wang, B.G. Pollet, and R.F. Wang, J. Power Sources 446, 227348 (2020).CrossRef Z.N. Wang, H. Wang, S. Ji, X.Y. Wang, B.G. Pollet, and R.F. Wang, J. Power Sources 446, 227348 (2020).CrossRef
56.
go back to reference R. Cisneros, R. Gao, R. Ortega, and I. Husain, Int. J. Control Article in press, 1 (2020) R. Cisneros, R. Gao, R. Ortega, and I. Husain, Int. J. Control Article in press, 1 (2020)
57.
58.
go back to reference M. Rezaei, N. Naghdi-Khozani, and N. Jafari, Renew. Energy 147, 1044 (2020).CrossRef M. Rezaei, N. Naghdi-Khozani, and N. Jafari, Renew. Energy 147, 1044 (2020).CrossRef
60.
go back to reference F. Fouladi, P. Henshaw, D.S.K. Ting, and S. Ray, Heat Tran. Eng. 41, 407 (2020).CrossRef F. Fouladi, P. Henshaw, D.S.K. Ting, and S. Ray, Heat Tran. Eng. 41, 407 (2020).CrossRef
62.
go back to reference A. Çağlar, A. Aldemir, and H. Kivrak, Fullerenes. Nanotub. Carbon Nanostructures 26, 863 (2018).CrossRef A. Çağlar, A. Aldemir, and H. Kivrak, Fullerenes. Nanotub. Carbon Nanostructures 26, 863 (2018).CrossRef
63.
64.
go back to reference S. Sankar, G.M. Anilkumar, T. Tamaki, and T. Yamaguchi, ChemCatChem 11, 4731 (2019).CrossRef S. Sankar, G.M. Anilkumar, T. Tamaki, and T. Yamaguchi, ChemCatChem 11, 4731 (2019).CrossRef
65.
go back to reference T.A. Hansu, A. Caglar, O. Sahin, and H. Kivrak, Mater. Chem. Phys. 239, 12201 (2020).CrossRef T.A. Hansu, A. Caglar, O. Sahin, and H. Kivrak, Mater. Chem. Phys. 239, 12201 (2020).CrossRef
66.
go back to reference C.-T. Hsieh, W.-H. Lin, Y.-F. Chen, D.-Y. Tzou, P.-Q. Chen, and R.-S. Juang, J Taiwan Inst Chem Eng. 71, 77 (2017).CrossRef C.-T. Hsieh, W.-H. Lin, Y.-F. Chen, D.-Y. Tzou, P.-Q. Chen, and R.-S. Juang, J Taiwan Inst Chem Eng. 71, 77 (2017).CrossRef
67.
go back to reference K.K. Maniam, V. Muthukumar, and R. Chetty, Int. J. Hydrog. Energy 41, 18602 (2016).CrossRef K.K. Maniam, V. Muthukumar, and R. Chetty, Int. J. Hydrog. Energy 41, 18602 (2016).CrossRef
68.
go back to reference B. Ong, S. Kamarudin, and S. Basri, Int. J. Hydrog. Energy 42, 10142 (2017).CrossRef B. Ong, S. Kamarudin, and S. Basri, Int. J. Hydrog. Energy 42, 10142 (2017).CrossRef
69.
go back to reference D. Chai, X. Zhang, S.H. Chan, and G. Li, J. Taiwan Inst. Chem. Eng. 95, 139 (2019).CrossRef D. Chai, X. Zhang, S.H. Chan, and G. Li, J. Taiwan Inst. Chem. Eng. 95, 139 (2019).CrossRef
71.
go back to reference L. Li, K. Scott, and E.H. Yu, J. Power Sources 221, 5 (2013). L. Li, K. Scott, and E.H. Yu, J. Power Sources 221, 5 (2013).
72.
go back to reference A. Brouzgou, L.L. Yan, S.Q. Song, and P. Tsiakaras, Appl. Catal. B Environ. 147, 481 (2014).CrossRef A. Brouzgou, L.L. Yan, S.Q. Song, and P. Tsiakaras, Appl. Catal. B Environ. 147, 481 (2014).CrossRef
73.
74.
go back to reference Q. Chen, Z. Xia, Y. Zhang, and S. Wang, J. Solid State Electrochem. 23, 3399 (2019).CrossRef Q. Chen, Z. Xia, Y. Zhang, and S. Wang, J. Solid State Electrochem. 23, 3399 (2019).CrossRef
75.
go back to reference A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi, and G. Leftheriotis, Mater. Today. Energy 15, 100365 (2020). A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi, and G. Leftheriotis, Mater. Today. Energy 15, 100365 (2020).
76.
go back to reference F. Bella, A.B. Muñoz-García, F. Colò, G. Meligrana, A. Lamberti, M. Destro, M. Pavone, and C. Gerbaldi, ACS Omega 3, 8440 (2018).CrossRef F. Bella, A.B. Muñoz-García, F. Colò, G. Meligrana, A. Lamberti, M. Destro, M. Pavone, and C. Gerbaldi, ACS Omega 3, 8440 (2018).CrossRef
77.
go back to reference D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, and E. Tresso, Org. Electron. 15, 3715 (2014).CrossRef D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, and E. Tresso, Org. Electron. 15, 3715 (2014).CrossRef
78.
go back to reference J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, and S. Luo, Chem. Eng. J. 366, 163 (2019).CrossRef J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, and S. Luo, Chem. Eng. J. 366, 163 (2019).CrossRef
79.
go back to reference F. Bella, S. Galliano, G. Piana, G. Giacona, G. Viscardi, M. Grätzel, C. Barolo, and C. Gerbaldi, Electrochim. Acta 302, 31 (2019).CrossRef F. Bella, S. Galliano, G. Piana, G. Giacona, G. Viscardi, M. Grätzel, C. Barolo, and C. Gerbaldi, Electrochim. Acta 302, 31 (2019).CrossRef
80.
go back to reference F. Bella, A. Verna, and C. Gerbaldi, Mater. Sci. Semicond. Process. 73, 92 (2018).CrossRef F. Bella, A. Verna, and C. Gerbaldi, Mater. Sci. Semicond. Process. 73, 92 (2018).CrossRef
81.
go back to reference F. Bella, A. Lamberti, A. Sacco, S. Bianco, A. Chiodoni, and R. Bongiovanni, J. Membr. Sci. 470, 125 (2014).CrossRef F. Bella, A. Lamberti, A. Sacco, S. Bianco, A. Chiodoni, and R. Bongiovanni, J. Membr. Sci. 470, 125 (2014).CrossRef
82.
go back to reference Y. Gu, Y. Liu, H. Yang, B. Li, and Y. An, Electrochim. Acta 160, 263 (2015).CrossRef Y. Gu, Y. Liu, H. Yang, B. Li, and Y. An, Electrochim. Acta 160, 263 (2015).CrossRef
83.
go back to reference Y. Gu, H. Yang, B. Li, J. Mao, and Y. An, Electrochim. Acta 194, 367 (2016).CrossRef Y. Gu, H. Yang, B. Li, J. Mao, and Y. An, Electrochim. Acta 194, 367 (2016).CrossRef
84.
go back to reference D. Chu, X.H. Li, D.X. Feng, J.S. Gu, and G. Shen, Acta Chim Sin. 62, 2403 (2004). D. Chu, X.H. Li, D.X. Feng, J.S. Gu, and G. Shen, Acta Chim Sin. 62, 2403 (2004).
85.
go back to reference T. Rafaïdeen, S. Baranton, and C. Coutanceau, Appl. Catal. B 243, 641 (2019).CrossRef T. Rafaïdeen, S. Baranton, and C. Coutanceau, Appl. Catal. B 243, 641 (2019).CrossRef
86.
go back to reference R.A. Escalona-Villalpando, M.P. Gurrola, G. Trejo, M. Guerra-Balcázar, J. Ledesma-García, and L.G. Arriaga, J Electroanal Chem. 816, 92 (2018).CrossRef R.A. Escalona-Villalpando, M.P. Gurrola, G. Trejo, M. Guerra-Balcázar, J. Ledesma-García, and L.G. Arriaga, J Electroanal Chem. 816, 92 (2018).CrossRef
87.
go back to reference A. Caglar, B. Ulas, O. Sahin, and H. Demir Kivrak, Energy Storage 1, e73 (2019).CrossRef A. Caglar, B. Ulas, O. Sahin, and H. Demir Kivrak, Energy Storage 1, e73 (2019).CrossRef
88.
go back to reference M. Sheikhzadeh, S. Hejazi, S. Mohajernia, O. Tomanec, M. Mokhtar, A. Alshehri, S. Sanjabi, R. Zboril, and P. Schmuki, ChemCatChem 11, 6258 (2019).CrossRef M. Sheikhzadeh, S. Hejazi, S. Mohajernia, O. Tomanec, M. Mokhtar, A. Alshehri, S. Sanjabi, R. Zboril, and P. Schmuki, ChemCatChem 11, 6258 (2019).CrossRef
89.
go back to reference N. Khaliq, M.A. Rasheed, G. Cha, M. Khan, S. Karim, P. Schmuki, and G. Ali, Sens. Actuators B. Chem. 302, 127200 (2020).CrossRef N. Khaliq, M.A. Rasheed, G. Cha, M. Khan, S. Karim, P. Schmuki, and G. Ali, Sens. Actuators B. Chem. 302, 127200 (2020).CrossRef
90.
go back to reference Z. Zhang, Z. Xu, Z. Yao, Y. Meng, Q. Xia, D. Li, and Z. Jiang, J. Alloys Compd. 805, 396 (2019).CrossRef Z. Zhang, Z. Xu, Z. Yao, Y. Meng, Q. Xia, D. Li, and Z. Jiang, J. Alloys Compd. 805, 396 (2019).CrossRef
91.
92.
go back to reference S. Santangelo, G. Messina, G. Faggio, A. Donato, L. Luca, N. Donato, A. Bonavita, and G. Neri, J. Solid State Chem. 183, 2451 (2010).CrossRef S. Santangelo, G. Messina, G. Faggio, A. Donato, L. Luca, N. Donato, A. Bonavita, and G. Neri, J. Solid State Chem. 183, 2451 (2010).CrossRef
93.
go back to reference A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, and C.F. Pirri, Sci. Rep. 5, 7808 (2015).CrossRef A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, and C.F. Pirri, Sci. Rep. 5, 7808 (2015).CrossRef
94.
go back to reference A. Caglar, D. Düzenli, I. Onal, I. Tezsevin, O. Sahin, and H. Kivrak, Int. J. Hydrog. Energy 45, 490 (2020).CrossRef A. Caglar, D. Düzenli, I. Onal, I. Tezsevin, O. Sahin, and H. Kivrak, Int. J. Hydrog. Energy 45, 490 (2020).CrossRef
95.
go back to reference O.F. Er, A. Caglar, B. Ulas, H. Kivrak, and A. Kivrak, Mater. Chem. Phys. 241, 122422 (2020).CrossRef O.F. Er, A. Caglar, B. Ulas, H. Kivrak, and A. Kivrak, Mater. Chem. Phys. 241, 122422 (2020).CrossRef
96.
go back to reference A. Caglar, M.S. Cogenli, A. Bayrakçeken Yurtcan, and H. Kivrak, Renew. Energy 150, 78 (2020).CrossRef A. Caglar, M.S. Cogenli, A. Bayrakçeken Yurtcan, and H. Kivrak, Renew. Energy 150, 78 (2020).CrossRef
97.
go back to reference B. Ulas, A. Caglar, A. Kivrak, N. Aktas, and H. Kivrak, Ionics 26, 3109 (2020).CrossRef B. Ulas, A. Caglar, A. Kivrak, N. Aktas, and H. Kivrak, Ionics 26, 3109 (2020).CrossRef
98.
go back to reference T. Avci Hansu, A. Çağlar, O. Sahin, and H. Kivrak, Int. J. Ecosyst. Ecol. Sci. (IJEES). 10, 38 (2020). T. Avci Hansu, A. Çağlar, O. Sahin, and H. Kivrak, Int. J. Ecosyst. Ecol. Sci. (IJEES). 10, 38 (2020).
99.
go back to reference H. Demir Kivrak, A. Caglar, T. Avcı Hansu, and O. Sahin, Manas J. Eng (MJEN) 8, 1 (2020). H. Demir Kivrak, A. Caglar, T. Avcı Hansu, and O. Sahin, Manas J. Eng (MJEN) 8, 1 (2020).
100.
go back to reference O. Ozok, E. Kavak, O.F. Er, H. Kivrak, and A. Kivrak, Int. J. Hydrog. Energy 45, 28706 (2020).CrossRef O. Ozok, E. Kavak, O.F. Er, H. Kivrak, and A. Kivrak, Int. J. Hydrog. Energy 45, 28706 (2020).CrossRef
101.
go back to reference A. Caglar, D. Düzenli, I. Önal, İ. Tezsevin, Ö. Sahin, and H. Kivrak, J. Phys. Chem. Solids Article in press, 109684 (2020). A. Caglar, D. Düzenli, I. Önal, İ. Tezsevin, Ö. Sahin, and H. Kivrak, J. Phys. Chem. Solids Article in press, 109684 (2020).
Metadata
Title
Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells
Authors
Aykut Caglar
Hilal Kivrak
Nahit Aktas
Ali Osman Solak
Publication date
29-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08671-0

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue