Skip to main content
Top

2020 | OriginalPaper | Chapter

32. Fabrication of Charge-Transfer Complex Nanocrystals Toward Electric Field-Induced Resistive Switching

Authors : Tsunenobu Onodera, Hidetoshi Oikawa

Published in: Photosynergetic Responses in Molecules and Molecular Aggregates

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Charge-transfer complex exhibits versatile characteristics such as optical properties, conductivity, and magnetism. The physicochemical properties can be controlled through molecular design combining various kinds of electron donors and acceptors. In particular, the degree of charge-transfer γ and the composition ratio of electron donor to acceptor are important factors to determine physicochemical properties. On the other hand, nanocrystallized charge-transfer complex would lead to unique properties, being different from both isolated molecule and bulk crystal. However, the reprecipitation method for common organic nanocrystals cannot be employed due to low solubility of charge-transfer complex in common organic solvents. Therefore, novel nanocrystallization method for charge-transfer complex should be developed. In this chapter, nanocrystallization involving doping process of charge-transfer complex, copper 7,7,8,8-tetracyanoquinodimethane (Cu-TCNQ), will be introduced in detail towards nanoelectronics application. Cu-TCNQ is typical Mott insulator and indicates a unique resistive switching behavior. It is expected that Cu-TCNQ nanocrystals with an excess amount of Cu, namely doped Cu-TCNQ nanocrystals, would show unique resistive switching behavior because of the degree of charge-transfer γ different from bulk crystal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tanaka J, Tanaka M, Kawai T, Takabe T, Maki O (1976) Electronic spectra and electronic structure of TCNQ complex. Bull Chem Soc Jpn 49:2358–2373CrossRef Tanaka J, Tanaka M, Kawai T, Takabe T, Maki O (1976) Electronic spectra and electronic structure of TCNQ complex. Bull Chem Soc Jpn 49:2358–2373CrossRef
2.
go back to reference Torrance JB (1979) The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal. Acc Chem Res 12:79–86CrossRef Torrance JB (1979) The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal. Acc Chem Res 12:79–86CrossRef
3.
go back to reference Nalwa HS (ed) (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, San Diego Nalwa HS (ed) (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, San Diego
4.
go back to reference Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31:L1132–L1134CrossRef Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31:L1132–L1134CrossRef
5.
go back to reference Kasai H, Oikawa H, Okada S, Nakanishi H (1998) Crystal growth of perylene microcrystals in the reprecipitation method. Bull Chem Soc Jpn 71:2597–2601CrossRef Kasai H, Oikawa H, Okada S, Nakanishi H (1998) Crystal growth of perylene microcrystals in the reprecipitation method. Bull Chem Soc Jpn 71:2597–2601CrossRef
6.
go back to reference Baba K, Kasai H, Okada S, Oikawa H, Nakanishi H (2000) Novel fabrication process of organic microcrystals using microwave-irradiation. Jpn J Appl Phys 39:L1256–L1258CrossRef Baba K, Kasai H, Okada S, Oikawa H, Nakanishi H (2000) Novel fabrication process of organic microcrystals using microwave-irradiation. Jpn J Appl Phys 39:L1256–L1258CrossRef
7.
go back to reference Ishii KU, Baba K, Wei Z, Kasai H, Nakanishi H, Okada S, Oikawa H (2006) Mass-production of pigment nanocrystals by the reprecipitation method and their encapsulation. Mol Cryst Liq Cryst 445:177/[467]–183[473] Ishii KU, Baba K, Wei Z, Kasai H, Nakanishi H, Okada S, Oikawa H (2006) Mass-production of pigment nanocrystals by the reprecipitation method and their encapsulation. Mol Cryst Liq Cryst 445:177/[467]–183[473]
8.
go back to reference Kaneko Y, Shimada S, Fukuda T, Kimura T, Yokoi H, Matsuda H, Onodera T, Kasai H, Okada S, Oikawa H, Nakanishi H (2005) A novel method for fixing the anisotropic orientation of dispersed organic nanocrystals in a magnetic field. Adv Mater 17:160–163CrossRef Kaneko Y, Shimada S, Fukuda T, Kimura T, Yokoi H, Matsuda H, Onodera T, Kasai H, Okada S, Oikawa H, Nakanishi H (2005) A novel method for fixing the anisotropic orientation of dispersed organic nanocrystals in a magnetic field. Adv Mater 17:160–163CrossRef
9.
go back to reference Baba K, Kasai H, Masuhara A, Okada S, Oikawa H, Nakanishi H (2007) Diacetylene nanowire crystals prepared by reprecipitation/microwave-irradiation method. Jpn J Appl Phys 46:7558–7561CrossRef Baba K, Kasai H, Masuhara A, Okada S, Oikawa H, Nakanishi H (2007) Diacetylene nanowire crystals prepared by reprecipitation/microwave-irradiation method. Jpn J Appl Phys 46:7558–7561CrossRef
10.
go back to reference Oyamada T, Tanaka H, Matsushige K, Sasabe H, Adachi C (2003) Switching effect in Cu:TCNQ charge transfer-complex thin film by vacuum codeposition. Appl Phys Lett 83:1252–1254CrossRef Oyamada T, Tanaka H, Matsushige K, Sasabe H, Adachi C (2003) Switching effect in Cu:TCNQ charge transfer-complex thin film by vacuum codeposition. Appl Phys Lett 83:1252–1254CrossRef
11.
go back to reference Xiao K, Ivanov IN, Puretzky AA, Liu Z, Geohegan DB (2006) Directed integration of tetracyanoquinodemethane-Cu organic nanowires into prefabricated device architectures. Adv Mater 18:2184–2188CrossRef Xiao K, Ivanov IN, Puretzky AA, Liu Z, Geohegan DB (2006) Directed integration of tetracyanoquinodemethane-Cu organic nanowires into prefabricated device architectures. Adv Mater 18:2184–2188CrossRef
12.
go back to reference Liu SG, Liu YQ, Wu PJ, Zhu DB (1996) Muitifaceted study of CuTCNQ thin-film materials. fabrication, morphology, and spectral and electrical switching properties. Chem Mater 8:2779–2787CrossRef Liu SG, Liu YQ, Wu PJ, Zhu DB (1996) Muitifaceted study of CuTCNQ thin-film materials. fabrication, morphology, and spectral and electrical switching properties. Chem Mater 8:2779–2787CrossRef
13.
go back to reference Liu Y, Ji Z, Tang Q, Jiang L, Li H, He M, Hu W, Zhang D, Jiang L, Wang X, Wang C, Liu Y, Zhu D (2005) Particle-size control pattering of a charge-transfer complex for nanoelectronics. Adv Mater 17:2953–2957CrossRef Liu Y, Ji Z, Tang Q, Jiang L, Li H, He M, Hu W, Zhang D, Jiang L, Wang X, Wang C, Liu Y, Zhu D (2005) Particle-size control pattering of a charge-transfer complex for nanoelectronics. Adv Mater 17:2953–2957CrossRef
14.
go back to reference O’Mullane AP, Fay N, Nafady A, Bond AM (2007) Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization. J Am Chem Soc 129:2066–2073CrossRef O’Mullane AP, Fay N, Nafady A, Bond AM (2007) Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization. J Am Chem Soc 129:2066–2073CrossRef
15.
go back to reference Neufeld AK, O’Mullane AP, Bond AM (2005) Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy. J Am Chem Soc 127:13846–13853CrossRef Neufeld AK, O’Mullane AP, Bond AM (2005) Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy. J Am Chem Soc 127:13846–13853CrossRef
16.
go back to reference Hiraishi K, Masuhara A, Yokoyama T, Kasai H, Nakanishi H, Oikawa H (2009) Fabrication and characterization of size-controlled CuTCNQ charge-transfer complex nanocrystals. J Cryst Growth 311:948–952CrossRef Hiraishi K, Masuhara A, Yokoyama T, Kasai H, Nakanishi H, Oikawa H (2009) Fabrication and characterization of size-controlled CuTCNQ charge-transfer complex nanocrystals. J Cryst Growth 311:948–952CrossRef
17.
go back to reference Onodera T, Matsuo S, Hiraishi K, Masuhara A, Kasai H, Oikawa H (2012) Fabrication of doped Cu-TCNQ nanocrystals and their optoelectronic properties. CrystEngComm 14:7586–7589CrossRef Onodera T, Matsuo S, Hiraishi K, Masuhara A, Kasai H, Oikawa H (2012) Fabrication of doped Cu-TCNQ nanocrystals and their optoelectronic properties. CrystEngComm 14:7586–7589CrossRef
18.
go back to reference Jonkman HT, Kommandeur J (1972) The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem Phys Lett 15:496–499CrossRef Jonkman HT, Kommandeur J (1972) The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem Phys Lett 15:496–499CrossRef
19.
go back to reference Heintz RA, Zhao H, Ouyang X, Grandinetti G, Cowen J, Dunbar KR (1999) New insight into the nature of Cu(TCNQ): solution route to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg Chem 38:144–156CrossRef Heintz RA, Zhao H, Ouyang X, Grandinetti G, Cowen J, Dunbar KR (1999) New insight into the nature of Cu(TCNQ): solution route to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg Chem 38:144–156CrossRef
20.
go back to reference Khatkale MS, Devlin JP (1979) The vibrational and electronic spectra of the mono-, di-, and tri-anion salts of TCNQ. J Chem Phys 70:1851–1859CrossRef Khatkale MS, Devlin JP (1979) The vibrational and electronic spectra of the mono-, di-, and tri-anion salts of TCNQ. J Chem Phys 70:1851–1859CrossRef
21.
go back to reference Laffont L, Wu MY, Chevallier F, Poizot P, Morcrette M, Tarascon JM (2006) High resolution EELS of Cu-V oxide: application of batteries materials. Micron 37:459–464CrossRef Laffont L, Wu MY, Chevallier F, Poizot P, Morcrette M, Tarascon JM (2006) High resolution EELS of Cu-V oxide: application of batteries materials. Micron 37:459–464CrossRef
22.
go back to reference Takahashi S, Miura H, Kasai H, Okada S, Oikawa H, Nakanishi H (2002) Single-crystal-to-single-crystal transformation of diolefin derivatives in nanocrystals. J Am Chem Soc 124:10944–10945CrossRef Takahashi S, Miura H, Kasai H, Okada S, Oikawa H, Nakanishi H (2002) Single-crystal-to-single-crystal transformation of diolefin derivatives in nanocrystals. J Am Chem Soc 124:10944–10945CrossRef
23.
go back to reference Kamitsos EI, Risen WM (1983) Raman studies in CuTCNQ: Resonance Raman spectral observations and calculations for TCNQ ion radicals. J Chem Phys 79:5808–5819CrossRef Kamitsos EI, Risen WM (1983) Raman studies in CuTCNQ: Resonance Raman spectral observations and calculations for TCNQ ion radicals. J Chem Phys 79:5808–5819CrossRef
Metadata
Title
Fabrication of Charge-Transfer Complex Nanocrystals Toward Electric Field-Induced Resistive Switching
Authors
Tsunenobu Onodera
Hidetoshi Oikawa
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5451-3_32

Premium Partners