Skip to main content
Top

2020 | OriginalPaper | Chapter

11. Fabrication of Nanostructures

Authors : T. Daniel Thangadurai, N. Manjubaashini, Sabu Thomas, Hanna J. Maria

Published in: Nanostructured Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explains the techniques that are available for fabricating nanostructures and also explain the substrates and wafers, modification of materials, lithography, film deposition, wet and dry etching, wafer bonding and packaging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mitin VV, Kochelap VA, Stroscio MA (2008) Introduction to nanoelectronics—science, nanotechnology, engineering, and applications. Cambridge University Press, New York Mitin VV, Kochelap VA, Stroscio MA (2008) Introduction to nanoelectronics—science, nanotechnology, engineering, and applications. Cambridge University Press, New York
2.
go back to reference Suzuki K, Matsui S, Ochiai Y (2000) Sub-half-micron lithography for ULSIs. Cambridge University Press, Cambridge Suzuki K, Matsui S, Ochiai Y (2000) Sub-half-micron lithography for ULSIs. Cambridge University Press, Cambridge
3.
go back to reference Sun S, Mendes P, Critchley K (2006) Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett 6:345–350CrossRef Sun S, Mendes P, Critchley K (2006) Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett 6:345–350CrossRef
4.
go back to reference Xia Y, Rogers JA, Paul KE et al (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99:1823–1848CrossRef Xia Y, Rogers JA, Paul KE et al (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99:1823–1848CrossRef
6.
go back to reference Singh M, Sun Y, Wang J (2012) Superconductivity in nanoscale systems. In: Superconductors—properties, technology, and applications. In Tech Publisher, Croatia Singh M, Sun Y, Wang J (2012) Superconductivity in nanoscale systems. In: Superconductors—properties, technology, and applications. In Tech Publisher, Croatia
7.
go back to reference Barbillon G, Hamouda F, Bartenlian B (2014) Large surface nanostructuring by lithographic techniques for bioplasmonic applications. In: Manufacturing nanostructures. One Centre Press, UK Barbillon G, Hamouda F, Bartenlian B (2014) Large surface nanostructuring by lithographic techniques for bioplasmonic applications. In: Manufacturing nanostructures. One Centre Press, UK
8.
go back to reference Wolfe DB, Christopher Love J, Whitesides GM (2004) Nanostructures replicated by polymer molding. In: Encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New York Wolfe DB, Christopher Love J, Whitesides GM (2004) Nanostructures replicated by polymer molding. In: Encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New York
9.
go back to reference Zhang J, Shokouhi B, Cui B (2012) Tilted nanostructure fabrication by electron beam lithography. J Vac Sci Technol B 30:06F302–06F307CrossRef Zhang J, Shokouhi B, Cui B (2012) Tilted nanostructure fabrication by electron beam lithography. J Vac Sci Technol B 30:06F302–06F307CrossRef
10.
go back to reference Peckerar M, Bass R, Rhee KW (2000) Sub-0.1 μ electron-beam lithography for nanostructure development. J Vac Sci Technol B Microelectron Nanometer Struct 18:3143–3149CrossRef Peckerar M, Bass R, Rhee KW (2000) Sub-0.1 μ electron-beam lithography for nanostructure development. J Vac Sci Technol B Microelectron Nanometer Struct 18:3143–3149CrossRef
11.
go back to reference Yang S, Wu Y (2018) EUV/soft x-ray interference lithography. In: Micro/nanolithography—a heuristic aspect on the enduring technology. Intech Open Science Publication, pp 83–100 Yang S, Wu Y (2018) EUV/soft x-ray interference lithography. In: Micro/nanolithography—a heuristic aspect on the enduring technology. Intech Open Science Publication, pp 83–100
12.
go back to reference Erdmanis M, Sievila P, Shah A (2014) Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces. Nanotechnol 25:335302–335309CrossRef Erdmanis M, Sievila P, Shah A (2014) Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces. Nanotechnol 25:335302–335309CrossRef
13.
go back to reference Arshak K, Mihov M, Arshak A et al (2004) Novel dry-developed focused ion beam lithography scheme for nanostructure applications. Microelectron Eng 73:144–151CrossRef Arshak K, Mihov M, Arshak A et al (2004) Novel dry-developed focused ion beam lithography scheme for nanostructure applications. Microelectron Eng 73:144–151CrossRef
14.
go back to reference Thywissen JH, Johnson KS, Younkin R et al (1999) Nanofabrication using neutral atomic beams. J Vac Sci Technol B 15:2093–2100CrossRef Thywissen JH, Johnson KS, Younkin R et al (1999) Nanofabrication using neutral atomic beams. J Vac Sci Technol B 15:2093–2100CrossRef
15.
go back to reference Williams W, Saffman M (2006) Two-dimensional atomic lithography by submicrometer focusing of atomic beams. J Opt Soc Am 23:1161–1169CrossRef Williams W, Saffman M (2006) Two-dimensional atomic lithography by submicrometer focusing of atomic beams. J Opt Soc Am 23:1161–1169CrossRef
16.
go back to reference Li Cheung C, Camarero JA, Woods BW (2003) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849CrossRef Li Cheung C, Camarero JA, Woods BW (2003) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849CrossRef
17.
go back to reference Notargiacomo A, Foglietti V, Cianci E et al (1999) Atomic force microscopy lithography as a nanodevice development technique. Nanotechnol 10:458–463CrossRef Notargiacomo A, Foglietti V, Cianci E et al (1999) Atomic force microscopy lithography as a nanodevice development technique. Nanotechnol 10:458–463CrossRef
18.
go back to reference Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502CrossRef Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502CrossRef
19.
go back to reference Kaufmann T, Ravoo BJ (2010) Stamps, inks and substrates: polymers in microcontact printing. Polym Chem 1:371–387CrossRef Kaufmann T, Ravoo BJ (2010) Stamps, inks and substrates: polymers in microcontact printing. Polym Chem 1:371–387CrossRef
20.
go back to reference Schift H, David C, Gobrecht J (2000) Quantitative analysis of the molding of nanostructures. J Vac Sci Technol B 18:3564–3568CrossRef Schift H, David C, Gobrecht J (2000) Quantitative analysis of the molding of nanostructures. J Vac Sci Technol B 18:3564–3568CrossRef
21.
go back to reference Barcelo S, Li Z (2016) Nanoimprint lithography for nanodevice fabrication. Nano Convergence 3:21–30CrossRef Barcelo S, Li Z (2016) Nanoimprint lithography for nanodevice fabrication. Nano Convergence 3:21–30CrossRef
22.
go back to reference Cao G (2004) Nanostructures & nanomaterials synthesis, properties & applications. Imperial College Press, LondonCrossRef Cao G (2004) Nanostructures & nanomaterials synthesis, properties & applications. Imperial College Press, LondonCrossRef
23.
go back to reference Marty F, Rousseau L, Saadany B (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36:673–677CrossRef Marty F, Rousseau L, Saadany B (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36:673–677CrossRef
24.
go back to reference Wang CG, Wu XZ, Di D et al (2016) Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering. Nanoscale 8:4672–4680CrossRef Wang CG, Wu XZ, Di D et al (2016) Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering. Nanoscale 8:4672–4680CrossRef
Metadata
Title
Fabrication of Nanostructures
Authors
T. Daniel Thangadurai
N. Manjubaashini
Sabu Thomas
Hanna J. Maria
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-26145-0_11

Premium Partners