Skip to main content
Top
Published in:

23-03-2023 | Technical Article

Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior

Authors: Borna Nejat, Iman Ebrahimzadeh, Mahdi Rafiei

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the Ti2AlC MAX phase was produced by mechanical alloying (MA) and spark plasma sintering (SPS) of a mixture of Ti, Al and C powders with a molar ratio of 2:1.1:1. The time of the mechanical alloying process and sintering process temperature were selected as variables, and their effect on the properties of resulted samples was investigated. SPS process was performed on the samples at temperatures of 1000, 1100 and 1200 °C and under the pressure of 30 MPa for 20 min. The cyclic oxidation behavior of the samples was then investigated. The density and hardness of the samples were also examined. The results showed that the best specimen had a density of 4.2 gr cm−3 and a hardness of 995 HV. According to the x-ray diffraction patterns, it was found that the Ti2AlC MAX phase has been formed in all samples. The cyclic oxidation process was performed for 50 h on the selected sample at temperatures 1200 and 1350 °C. The results of oxidation test showed that Al2O3 and TiO2 oxide layers formed with good adhesion on the substrate surface. The weight gain equation of the oxidation test was obtained powerfully at temperatures of 1200 and 1350 °C, where the oxidation constant (ko) increased from 8 × 10–4 to 9 × 10–3 mgn h−1, respectively. In this study, the best results were obtained by MA time of 24 h and then SPS process at the temperature of 1200 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92, p 20–27. M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92, p 20–27.
2.
go back to reference M.W. Barsoum, The Mn+1AXn Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281.CrossRef M.W. Barsoum, The Mn+1AXn Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281.CrossRef
3.
go back to reference Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56, p 143–166.CrossRef Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56, p 143–166.CrossRef
4.
go back to reference M. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res., 2011, 41, p 195–227.CrossRef M. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res., 2011, 41, p 195–227.CrossRef
5.
go back to reference B. Cui, R. Sa, D.D. Jayaseelan, F. Inam, M.J. Reece, and W.E. Lee, Microstructural Evolution During High-Temperature Oxidation of Spark Plasma Sintered Ti2AlN Ceramics, Acta Mater., 2012, 60, p 1079–1092.CrossRef B. Cui, R. Sa, D.D. Jayaseelan, F. Inam, M.J. Reece, and W.E. Lee, Microstructural Evolution During High-Temperature Oxidation of Spark Plasma Sintered Ti2AlN Ceramics, Acta Mater., 2012, 60, p 1079–1092.CrossRef
6.
go back to reference I.R. Shein and A.L. Ivanovskii, Elastic Properties of Superconducting MAX Phases from First-Principles Calculations, Phys. Status Solidi (b), 2011, 248, p 228–232.CrossRef I.R. Shein and A.L. Ivanovskii, Elastic Properties of Superconducting MAX Phases from First-Principles Calculations, Phys. Status Solidi (b), 2011, 248, p 228–232.CrossRef
7.
go back to reference I. Low, Advances in Science and Technology of Mn+1AXnPhases, Elsevier, Amsterdam, 2012.CrossRef I. Low, Advances in Science and Technology of Mn+1AXnPhases, Elsevier, Amsterdam, 2012.CrossRef
8.
go back to reference B. Anasori, N.C. El’ad, Y. Elraheb, and M.W. Barsoum, On the Oxidation of Ti2GeC in Air, J. Alloys Compd., 2013, 580, p 550–557.CrossRef B. Anasori, N.C. El’ad, Y. Elraheb, and M.W. Barsoum, On the Oxidation of Ti2GeC in Air, J. Alloys Compd., 2013, 580, p 550–557.CrossRef
9.
go back to reference Z.M. Sun, H. Hashimoto, Z.F. Zhang, S.L. Yang, and S. Tada, Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2, Mater. Trans., 2006, 47, p 170–174.CrossRef Z.M. Sun, H. Hashimoto, Z.F. Zhang, S.L. Yang, and S. Tada, Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2, Mater. Trans., 2006, 47, p 170–174.CrossRef
10.
go back to reference J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell et al., Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M=Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120.CrossRef J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell et al., Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M=Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120.CrossRef
11.
go back to reference J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Mater. Sci. Forum, 2010, 658, p 340–343.CrossRef J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Mater. Sci. Forum, 2010, 658, p 340–343.CrossRef
12.
go back to reference E. Sadeghi, F. Karimzadeh, and M.H. Abbasi, Thermodynamic Analysis of Ti–Al–C Intermetallics Formation by Mechanical Alloying, J. Alloys Compd., 2013, 576, p 317–323.CrossRef E. Sadeghi, F. Karimzadeh, and M.H. Abbasi, Thermodynamic Analysis of Ti–Al–C Intermetallics Formation by Mechanical Alloying, J. Alloys Compd., 2013, 576, p 317–323.CrossRef
13.
go back to reference B. Velasco, E. Gordo, L. Hu, M. Radovic, and S.A. Tsipas, Influence of Porosity on Elastic Properties of Ti2AlC and Ti3SiC2 MAX Phase Foams, J. Alloys Compd., 2018, 764, p 24–35.CrossRef B. Velasco, E. Gordo, L. Hu, M. Radovic, and S.A. Tsipas, Influence of Porosity on Elastic Properties of Ti2AlC and Ti3SiC2 MAX Phase Foams, J. Alloys Compd., 2018, 764, p 24–35.CrossRef
14.
go back to reference T. Fey, M. Stumpf, A. Chmielarz, P. Colombo, P. Greil, and M. Potoczek, Microstructure, Thermal Conductivity and Simulation of Elastic Modulus of MAX-Phase (Ti2AlC) Gel-Cast Foams, J. Eur. Ceram. Soc., 2018, 38(10), p 3424–3432.CrossRef T. Fey, M. Stumpf, A. Chmielarz, P. Colombo, P. Greil, and M. Potoczek, Microstructure, Thermal Conductivity and Simulation of Elastic Modulus of MAX-Phase (Ti2AlC) Gel-Cast Foams, J. Eur. Ceram. Soc., 2018, 38(10), p 3424–3432.CrossRef
15.
go back to reference S. Badie, A. Dash, Y. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Synthesis, Sintering and Effect of Surface Roughness on Oxidation of Submicron Ti2AlC Ceramics, J. Am. Ceram. Soc., 2020, 104(4), p 1669–1688.CrossRef S. Badie, A. Dash, Y. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Synthesis, Sintering and Effect of Surface Roughness on Oxidation of Submicron Ti2AlC Ceramics, J. Am. Ceram. Soc., 2020, 104(4), p 1669–1688.CrossRef
16.
go back to reference R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava et al., Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165.CrossRef R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava et al., Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165.CrossRef
17.
go back to reference A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas,and M. Guerioune, Synthesis of High-Purity Polycrystalline MAX Phases in Ti–Al–C SYSTEM THROUGH MECHANICally Activated Self-propagating High-temperature Synthesis, J. Eur. Ceram. Soc., 2010, 30(4), p 1049–1057.CrossRef A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas,and M. Guerioune, Synthesis of High-Purity Polycrystalline MAX Phases in Ti–Al–C SYSTEM THROUGH MECHANICally Activated Self-propagating High-temperature Synthesis, J. Eur. Ceram. Soc., 2010, 30(4), p 1049–1057.CrossRef
18.
go back to reference M.W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, Oxidation of Tin+1AlXn (n={1 3} and X= C, N): II. Experimental Results, J. Electrochem. Soc., 2001, 148(8), p C551.CrossRef M.W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, Oxidation of Tin+1AlXn (n={1 3} and X= C, N): II. Experimental Results, J. Electrochem. Soc., 2001, 148(8), p C551.CrossRef
19.
go back to reference W. Yu, V. Mauchamp, T. Cabioc’h, D. Magne, L. Gence, L. Piraux et al., Solid Solution Effects in the Ti2Al(CxNy) MAX Phases: Synthesis, Microstructure, Electronic Structure and Transport Properties, Acta Mater., 2014, 80, p 421–434.CrossRef W. Yu, V. Mauchamp, T. Cabioc’h, D. Magne, L. Gence, L. Piraux et al., Solid Solution Effects in the Ti2Al(CxNy) MAX Phases: Synthesis, Microstructure, Electronic Structure and Transport Properties, Acta Mater., 2014, 80, p 421–434.CrossRef
20.
go back to reference Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, Anisotropic Corrosion of Ti2AlC and Ti3AlC2 in Supercritical Water at 500 °C, Ceram. Int., 2017, 43(9), p 7166–7171.CrossRef Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, Anisotropic Corrosion of Ti2AlC and Ti3AlC2 in Supercritical Water at 500 °C, Ceram. Int., 2017, 43(9), p 7166–7171.CrossRef
21.
go back to reference F. Wang, Q. Su, M. Nastasi, M.A. Kirk, M. Li, and B. Cui, Evolution of Irradiation Defects in Ti2AlC Ceramics During Heavy Ion Irradiation, Ceram. Int., 2018, 44(12), p 14686–14692.CrossRef F. Wang, Q. Su, M. Nastasi, M.A. Kirk, M. Li, and B. Cui, Evolution of Irradiation Defects in Ti2AlC Ceramics During Heavy Ion Irradiation, Ceram. Int., 2018, 44(12), p 14686–14692.CrossRef
22.
go back to reference Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Deposition and Characterization of Phase-Pure Ti2AlC and Ti3AlC2 Coatings by DC Magnetron Sputtering with Cost-Effective Targets, Vacuum, 2018, 153, p 62–69.CrossRef Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Deposition and Characterization of Phase-Pure Ti2AlC and Ti3AlC2 Coatings by DC Magnetron Sputtering with Cost-Effective Targets, Vacuum, 2018, 153, p 62–69.CrossRef
23.
go back to reference W. Wang, M. Sokol, S. Kota, and M. Barsoum, Reaction Paths and Microstructures of Nickel and Ti2AlC Mixtures Reacted in the 1050–1350 °C TEMPERATURE RANGE, J. Alloys Compd., 2020, 828, p 154193.CrossRef W. Wang, M. Sokol, S. Kota, and M. Barsoum, Reaction Paths and Microstructures of Nickel and Ti2AlC Mixtures Reacted in the 1050–1350 °C TEMPERATURE RANGE, J. Alloys Compd., 2020, 828, p 154193.CrossRef
24.
go back to reference X. Li, X. Xie, J. Gonzalez-Julian, J. Malzbender, and R. Yang, Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials, J. Eur. Ceram. Soc., 2020, 40(15), p 5258–5271.CrossRef X. Li, X. Xie, J. Gonzalez-Julian, J. Malzbender, and R. Yang, Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials, J. Eur. Ceram. Soc., 2020, 40(15), p 5258–5271.CrossRef
25.
go back to reference W. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, and S. Dubois, Oxidation Mechanisms in Bulk Ti2AlC: Influence of The Grain Size, J. Eur. Ceram. Soc., 2020, 40(5), p 1820–1828.CrossRef W. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, and S. Dubois, Oxidation Mechanisms in Bulk Ti2AlC: Influence of The Grain Size, J. Eur. Ceram. Soc., 2020, 40(5), p 1820–1828.CrossRef
26.
go back to reference B. Mei, Z. Weibing, J. Zhu, and X. Hong, Synthesis of High-Purity Ti2AlC by Spark Plasma Sintering (SPS) of the Elemental Powders, J. Mater. Sci., 2004, 39, p 1471–1472.CrossRef B. Mei, Z. Weibing, J. Zhu, and X. Hong, Synthesis of High-Purity Ti2AlC by Spark Plasma Sintering (SPS) of the Elemental Powders, J. Mater. Sci., 2004, 39, p 1471–1472.CrossRef
27.
go back to reference W.B. Zhou, B.C. Mei, J.Q. Zhu, and X.L. Hong, Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique, Mater. Lett., 2005, 59(1), p 131–134.CrossRef W.B. Zhou, B.C. Mei, J.Q. Zhu, and X.L. Hong, Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique, Mater. Lett., 2005, 59(1), p 131–134.CrossRef
28.
go back to reference Y.L. Yue and H.T. Wu, Fabrication of Ti2AlC/TiAl Composites with the Addition of Niobium by Spark Plasma Sintering, Key Eng. Mater., 2008, 368–372, p 1004–1006.CrossRef Y.L. Yue and H.T. Wu, Fabrication of Ti2AlC/TiAl Composites with the Addition of Niobium by Spark Plasma Sintering, Key Eng. Mater., 2008, 368–372, p 1004–1006.CrossRef
29.
go back to reference S. Kulkarni and A. Datye, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–Carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef S. Kulkarni and A. Datye, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–Carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef
30.
go back to reference Y.L. Chen, X. Zhu, P. Lu, Z. Li, C. Zeng, and M. Yan, Ti2AlC/TiC Functionally Graded Material Fabricated by SPS, Appl. Mech. Mater., 2014, 543–547, p 3869–3873.CrossRef Y.L. Chen, X. Zhu, P. Lu, Z. Li, C. Zeng, and M. Yan, Ti2AlC/TiC Functionally Graded Material Fabricated by SPS, Appl. Mech. Mater., 2014, 543–547, p 3869–3873.CrossRef
31.
go back to reference G.-H. Jeong, G.-R. Baek, T.F. Zhang, K. Kim, K. Kim, H. Shin et al., MAX-Phase Ti2AlC Ceramics: Syntheses, Properties and Feasibility of Applications in Micro Electrical Discharge Machining, J. Ceram. Process. Res., 2016, 17, p 1116–1122. G.-H. Jeong, G.-R. Baek, T.F. Zhang, K. Kim, K. Kim, H. Shin et al., MAX-Phase Ti2AlC Ceramics: Syntheses, Properties and Feasibility of Applications in Micro Electrical Discharge Machining, J. Ceram. Process. Res., 2016, 17, p 1116–1122.
32.
go back to reference K. Kozak, A. Dosi, G. Antou, N. Pradeilles, and T. Chotard, Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC Ceramics Elaborated by Spark Plasma Sintering Using Ultrasonic Means: Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC, Adv. Eng. Mater., 2016, 18, p 1952–1957.CrossRef K. Kozak, A. Dosi, G. Antou, N. Pradeilles, and T. Chotard, Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC Ceramics Elaborated by Spark Plasma Sintering Using Ultrasonic Means: Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC, Adv. Eng. Mater., 2016, 18, p 1952–1957.CrossRef
33.
go back to reference R. Benitez, H. Gao, M. O’Neal, P. Lovelace, G. Proust, and M. Radovic, Effects of Microstructure on the Mechanical Properties of Ti2AlC in Compression, Acta Mater., 2018, 143, p 130–140.CrossRef R. Benitez, H. Gao, M. O’Neal, P. Lovelace, G. Proust, and M. Radovic, Effects of Microstructure on the Mechanical Properties of Ti2AlC in Compression, Acta Mater., 2018, 143, p 130–140.CrossRef
34.
go back to reference L. Boatemaa, M. Bosch, A.-S. Farle, G. Bei, S. Zwaag, and W.G. Sloof, Autonomous High Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles, J. Am. Ceram. Soc., 2018, 101, p 5684–5693.CrossRef L. Boatemaa, M. Bosch, A.-S. Farle, G. Bei, S. Zwaag, and W.G. Sloof, Autonomous High Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles, J. Am. Ceram. Soc., 2018, 101, p 5684–5693.CrossRef
35.
go back to reference Y. Wada, N. Sekido, T. Ohmura, and K. Yoshimi, Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC, Mater. Trans., 2018, 59, p 771–778.CrossRef Y. Wada, N. Sekido, T. Ohmura, and K. Yoshimi, Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC, Mater. Trans., 2018, 59, p 771–778.CrossRef
36.
go back to reference C. Lu, K. Piven, Q. Qi, J. Zhang, G. Hug, and A. Jankowiak, Substitution Behavior of Si Atoms in the Ti2AlC Ceramics, Acta Mater., 2018, 144, p 543–551.CrossRef C. Lu, K. Piven, Q. Qi, J. Zhang, G. Hug, and A. Jankowiak, Substitution Behavior of Si Atoms in the Ti2AlC Ceramics, Acta Mater., 2018, 144, p 543–551.CrossRef
37.
go back to reference T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha et al., Effect of Graphene Reinforcement on the Mechanical Properties of Ti2AlC Ceramic Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 728, p 45–53.CrossRef T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha et al., Effect of Graphene Reinforcement on the Mechanical Properties of Ti2AlC Ceramic Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 728, p 45–53.CrossRef
38.
go back to reference Z. Zhan, Y. Chen, M. Radovic, and A. Srivastava, Non-classical Crystallographic Slip in a Ternary Carbide – Ti2AlC, Mater. Res. Lett., 2020, 8(7), p 275–281.CrossRef Z. Zhan, Y. Chen, M. Radovic, and A. Srivastava, Non-classical Crystallographic Slip in a Ternary Carbide – Ti2AlC, Mater. Res. Lett., 2020, 8(7), p 275–281.CrossRef
39.
go back to reference A. Koniuszewska and K. Naplocha, Microwave Assisted Self-propagating High-temperature Synthesis of Ti2AlC MAX Phase, Compos. Theory Pract., 2016, 16, p 109–112. A. Koniuszewska and K. Naplocha, Microwave Assisted Self-propagating High-temperature Synthesis of Ti2AlC MAX Phase, Compos. Theory Pract., 2016, 16, p 109–112.
40.
go back to reference W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin, Synthesis and Formation Mechanism of High-Purity Ti3AlC2 Powders by Microwave Sintering, Int. J. Appl. Ceram. Technol., 2019, 17, p 778–789.CrossRef W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin, Synthesis and Formation Mechanism of High-Purity Ti3AlC2 Powders by Microwave Sintering, Int. J. Appl. Ceram. Technol., 2019, 17, p 778–789.CrossRef
41.
go back to reference Smialek J. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxidation of Metals. 2015;83. Smialek J. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxidation of Metals. 2015;83.
42.
go back to reference J.L. Smialek, Environmental Resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37(1), p 23–34.CrossRef J.L. Smialek, Environmental Resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37(1), p 23–34.CrossRef
43.
go back to reference J.L. Smialek, B.J. Harder, and A. Garg, Oxidative Durability of TBCs on Ti2AlC MAX Phase Substrates, Surf. Coat. Technol., 2016, 285, p 77–86.CrossRef J.L. Smialek, B.J. Harder, and A. Garg, Oxidative Durability of TBCs on Ti2AlC MAX Phase Substrates, Surf. Coat. Technol., 2016, 285, p 77–86.CrossRef
44.
go back to reference Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai et al., Feature Article, J. Eur. Ceram. Soc., 2017, 37(1), p 43–51.CrossRef Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai et al., Feature Article, J. Eur. Ceram. Soc., 2017, 37(1), p 43–51.CrossRef
45.
go back to reference C. Tang, M. Steinbrück, M. Große, T. Bergfeldt, and H.J. Seifert, Oxidation Behavior of Ti2AlC in the Temperature Range of 1400 °C–1600 °C in Steam, J. Nucl. Mater., 2017, 490, p 130–142.CrossRef C. Tang, M. Steinbrück, M. Große, T. Bergfeldt, and H.J. Seifert, Oxidation Behavior of Ti2AlC in the Temperature Range of 1400 °C–1600 °C in Steam, J. Nucl. Mater., 2017, 490, p 130–142.CrossRef
46.
go back to reference A. Donchev, M. Schütze, E. Ström, and M. Galetz, Oxidation Behaviour of the MAX-Phases Ti2AlC and (Ti, Nb)2AlC at Elevated Temperatures with and Without Fluorine Treatment, J. Eur. Ceram. Soc., 2019, 39(15), p 4595–4601.CrossRef A. Donchev, M. Schütze, E. Ström, and M. Galetz, Oxidation Behaviour of the MAX-Phases Ti2AlC and (Ti, Nb)2AlC at Elevated Temperatures with and Without Fluorine Treatment, J. Eur. Ceram. Soc., 2019, 39(15), p 4595–4601.CrossRef
47.
go back to reference L. Smialek, Relative Ti2AlC Scale Volatility Under 1300 °C Combustion Conditions, Coatings, 2020, 10, p 142.CrossRef L. Smialek, Relative Ti2AlC Scale Volatility Under 1300 °C Combustion Conditions, Coatings, 2020, 10, p 142.CrossRef
48.
go back to reference X. Wang and Y. Zhou, High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxid. Met., 2003, 59(3–4), p 303–320.CrossRef X. Wang and Y. Zhou, High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxid. Met., 2003, 59(3–4), p 303–320.CrossRef
49.
go back to reference J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air, Oxid. Met., 2007, 68, p 97–111.CrossRef J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air, Oxid. Met., 2007, 68, p 97–111.CrossRef
50.
go back to reference W. Zhou, K. Li, J. Zhu, S. Tian, and D.-M. Zhu, Low-Temperature Synthesis of High-Purity Ti2AlC Powder by Microwave Sintering, Micro Nano Lett., 2018, 13, p 798–800.CrossRef W. Zhou, K. Li, J. Zhu, S. Tian, and D.-M. Zhu, Low-Temperature Synthesis of High-Purity Ti2AlC Powder by Microwave Sintering, Micro Nano Lett., 2018, 13, p 798–800.CrossRef
51.
go back to reference M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, Alumina Forming High Temperature Silicides and Carbides, Ceram. Int., 2004, 30, p 1899–1904.CrossRef M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, Alumina Forming High Temperature Silicides and Carbides, Ceram. Int., 2004, 30, p 1899–1904.CrossRef
52.
go back to reference Z.J. Lin, M.J. Zhuo, Y. Zhou, M. Li, and J. Wang, Microstructural Characterization of Layered Ternary Ti2AlC, Acta Mater., 2006, 54, p 1009–1015.CrossRef Z.J. Lin, M.J. Zhuo, Y. Zhou, M. Li, and J. Wang, Microstructural Characterization of Layered Ternary Ti2AlC, Acta Mater., 2006, 54, p 1009–1015.CrossRef
53.
go back to reference D.J. Tallman, B. Anasori, and M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res. Lett., 2013, 1, p 115–125.CrossRef D.J. Tallman, B. Anasori, and M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res. Lett., 2013, 1, p 115–125.CrossRef
54.
go back to reference M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80, p 1919–1928.CrossRef M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80, p 1919–1928.CrossRef
55.
go back to reference A. Li, C. Hu, M. Li, and Y. Zhou, Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure, J. Eur. Ceram. Soc., 2009, 29, p 2619–2625.CrossRef A. Li, C. Hu, M. Li, and Y. Zhou, Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure, J. Eur. Ceram. Soc., 2009, 29, p 2619–2625.CrossRef
56.
go back to reference T. Thomas, Fabrication Techniques to Produce Micro and Macro Porous MAX-Phase Ti2AlC Ceramic (University of Bath, 2015. T. Thomas, Fabrication Techniques to Produce Micro and Macro Porous MAX-Phase Ti2AlC Ceramic (University of Bath, 2015.
57.
go back to reference J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Materials Science Forum, Trans Tech Publ, Wollerau, 2010, p 340–343 J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Materials Science Forum, Trans Tech Publ, Wollerau, 2010, p 340–343
58.
go back to reference A. Attaei, Mechanical Alloying and Mechanical Activation a Technology for Processing of Nanomaterials (University of Tehran, 2007) A. Attaei, Mechanical Alloying and Mechanical Activation a Technology for Processing of Nanomaterials (University of Tehran, 2007)
59.
go back to reference M. Rafiei, M. Salehi, M. Shamanian, and A. Motallebzadeh, Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process, Ceram. Int., 2014, 40(8), p 13599–13609.CrossRef M. Rafiei, M. Salehi, M. Shamanian, and A. Motallebzadeh, Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process, Ceram. Int., 2014, 40(8), p 13599–13609.CrossRef
Metadata
Title
Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior
Authors
Borna Nejat
Iman Ebrahimzadeh
Mahdi Rafiei
Publication date
23-03-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08044-8

Premium Partners