Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-09-2012 | Focus | Issue 9/2012

Soft Computing 9/2012

Face recognition via local preserving average neighborhood margin maximization and extreme learning machine

Journal:
Soft Computing > Issue 9/2012
Authors:
Xiaoming Chen, Wanquan Liu, Jianhuang Lai, Zhen Li, Chong Lu

Abstract

Average neighborhood maximum margin (ANMM) is an effective method for feature extraction in appearance-based face recognition. In this paper, we extend ANMM to locality preserving average neighborhood margin maximization (LPANMM) in order to maintain the local structure on the original data manifold in the discriminant feature space. We also combine LPANMM with extreme learning machine (ELM) as a new scheme for face recognition, we train the single-hidden layer feedforward neural network (SLFN) in the ELM classifier with the discriminant features that are extracted by LPANMM, then we use the trained ELM classifer to classify the test data. In the process of training SLFN, ELM can not only achieve the smallest training error in theory, but is also not sensitive to the initial value selection of the parameters for the SLFN. Experimental results on ORL, Yale, CMU PIE and FERET face databases demonstrate the scheme LPANMM/ELM can achieve better performance than ANMM and other traditional schemes for face recognition.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2012

Soft Computing 9/2012 Go to the issue

Premium Partner

    Image Credits