Skip to main content
Top
Published in: Journal of Materials Science 20/2018

02-07-2018 | Composites

Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil–water separation

Authors: Cheng Zhang, Shuai He, Dingfei Wang, Fang Xu, Fengxiu Zhang, Guangxian Zhang

Published in: Journal of Materials Science | Issue 20/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel smart Janus membrane for unidirectional water transfer and oil–water separation is facilely fabricated by coating graphene nanoplatelets (GNs) onto one side of polyethylene terephthalate (PET) fabric through high-temperature and high-pressure method and subsequently grafting phosphoric acid (HP) into the other side of PET fabric. Results suggest that the prepared HP–PET–GNs Janus membrane with heterogeneous surface wettability attributed to the hierarchical structure of membrane shows special unidirectional water transfer property. The water droplet can penetrate across the membrane from the GNs-coated (hydrophobic) side to the HP-grafted (hydrophilic) side, and be blocked to pass through the membrane from hydrophilic side to hydrophobic side. Moreover, the HP–PET–GNs Janus membrane is found to have the maximum water flux and separation efficiency of 2073 ± 207 Lm−2h−1 and 99.5 ± 0.2% for methylbenzene–water mixture, and the maximum oil flux and separation efficiency of 3113 ± 52 Lm−2h−1 and 99.6 ± 0.1% for carbon tetrachloride–water mixture, respectively. The water separation efficiency and oil separation efficiency could arrive at 99.0 ± 0.1 and 99.3 ± 0.2% even after 10 separation cycles, respectively. It is revealed that the obtained Janus membrane has excellent separation capability for separating the layered oil–water mixtures and possesses wonderful recyclability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Feng CF, Yi ZY, She FH, Gao WM, Peng Z, Garvey CJ, Dumee LF, Kong LX (2016) Superhydrophobic and superoleophilic micro-wrinkled reduced graphene oxide as a highly portable and recyclable oil sorbent. ACS Appl Mater Interfaces 8:9977–9985CrossRef Feng CF, Yi ZY, She FH, Gao WM, Peng Z, Garvey CJ, Dumee LF, Kong LX (2016) Superhydrophobic and superoleophilic micro-wrinkled reduced graphene oxide as a highly portable and recyclable oil sorbent. ACS Appl Mater Interfaces 8:9977–9985CrossRef
2.
go back to reference Hu Y, Zhu Y, Wang H, Wang C, Li H, Zhang X, Yuan R, Zhao Y (2017) Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation. Chem Eng J 322:157–166CrossRef Hu Y, Zhu Y, Wang H, Wang C, Li H, Zhang X, Yuan R, Zhao Y (2017) Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation. Chem Eng J 322:157–166CrossRef
3.
go back to reference Zhou S, Hao G, Zhou X, Jiang W, Wang T, Zhang N, Yu L (2016) One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem Eng J 302:155–162CrossRef Zhou S, Hao G, Zhou X, Jiang W, Wang T, Zhang N, Yu L (2016) One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem Eng J 302:155–162CrossRef
6.
go back to reference Ma WJ, Zhang QL, Hua DW (2016) Electrospun fibers for oil–water separation. RSC Adv 6:12868–12884CrossRef Ma WJ, Zhang QL, Hua DW (2016) Electrospun fibers for oil–water separation. RSC Adv 6:12868–12884CrossRef
7.
go back to reference Chakrabarty B, Ghoshal AK, Purkait MK (2008) Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J Membr Sci 325:427–437CrossRef Chakrabarty B, Ghoshal AK, Purkait MK (2008) Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J Membr Sci 325:427–437CrossRef
8.
go back to reference Gupta P, Kandasubramanian B (2017) Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Appl Mater Interfaces 9:19102–19113CrossRef Gupta P, Kandasubramanian B (2017) Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Appl Mater Interfaces 9:19102–19113CrossRef
9.
go back to reference Peng YB, Guo F, Wen QY, Yang FC, Guo ZG (2017) A novel polyacrylonitrile membrane with a high flux for emulsified oil–water separation. Purif Technol 184:72–78CrossRef Peng YB, Guo F, Wen QY, Yang FC, Guo ZG (2017) A novel polyacrylonitrile membrane with a high flux for emulsified oil–water separation. Purif Technol 184:72–78CrossRef
10.
go back to reference Yang X, He Y, Zeng G, Chen X, Shi H, Qing D, Li F, Chen Q (2017) Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation. Chem Eng J 321:245–256CrossRef Yang X, He Y, Zeng G, Chen X, Shi H, Qing D, Li F, Chen Q (2017) Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation. Chem Eng J 321:245–256CrossRef
11.
go back to reference Ma W, Samal SK, Liu Z, Xiong R, De Smedt SC, Bhushan B, Zhang Q, Huang C (2017) Dual pH-and ammonia-vapor-responsive electrospun nanofibrous membranes for oil–water separations. J Membr Sci 537:128–139CrossRef Ma W, Samal SK, Liu Z, Xiong R, De Smedt SC, Bhushan B, Zhang Q, Huang C (2017) Dual pH-and ammonia-vapor-responsive electrospun nanofibrous membranes for oil–water separations. J Membr Sci 537:128–139CrossRef
12.
go back to reference Stolz A, Le Floch S, Reinert L et al (2016) Melamine-derived carbon sponges for oil–water separation. Carbon 107:198–208CrossRef Stolz A, Le Floch S, Reinert L et al (2016) Melamine-derived carbon sponges for oil–water separation. Carbon 107:198–208CrossRef
15.
go back to reference Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z (2013) Janus graphene from asymmetric two-dimensional chemistry. Nat Commun 4:1443CrossRef Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z (2013) Janus graphene from asymmetric two-dimensional chemistry. Nat Commun 4:1443CrossRef
16.
go back to reference Liu Y, Wang XW, Fei B, Hu HW, Lai CL, Xin JH (2015) Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water. Adv Funct Mater 25:5047–5056CrossRef Liu Y, Wang XW, Fei B, Hu HW, Lai CL, Xin JH (2015) Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water. Adv Funct Mater 25:5047–5056CrossRef
17.
go back to reference Chen JW, Liu YM, Guo DW, Cao MY, Jiang L (2015) Under-water unidirectional air penetration via a Janus mesh. Chem Commun 51:11872–11875CrossRef Chen JW, Liu YM, Guo DW, Cao MY, Jiang L (2015) Under-water unidirectional air penetration via a Janus mesh. Chem Commun 51:11872–11875CrossRef
18.
go back to reference Han D, Xiao P, Gu JC et al (2014) Polymer brush functionalized Janus graphene oxide chitosan hybrid membranes. RSC Adv 4:22759–22762CrossRef Han D, Xiao P, Gu JC et al (2014) Polymer brush functionalized Janus graphene oxide chitosan hybrid membranes. RSC Adv 4:22759–22762CrossRef
19.
go back to reference Zhao Y, Yu C, Lan H, Cao M, Jiang L (2017) Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf. Adv Funct Mater 27:1701466CrossRef Zhao Y, Yu C, Lan H, Cao M, Jiang L (2017) Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf. Adv Funct Mater 27:1701466CrossRef
20.
go back to reference Zhang WB, Hu L, Chen HM, Gao SJ, Zhang XC, Jin J (2017) Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. J Mater Chem B 5:4876–4882CrossRef Zhang WB, Hu L, Chen HM, Gao SJ, Zhang XC, Jin J (2017) Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. J Mater Chem B 5:4876–4882CrossRef
21.
go back to reference Liu Y, Xin JH, Choi CH (2012) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28:17426–17434CrossRef Liu Y, Xin JH, Choi CH (2012) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28:17426–17434CrossRef
22.
go back to reference Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994CrossRef Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994CrossRef
24.
go back to reference Zhang Y, Barboiu M (2015) Dynameric asymmetric membranes for directional. Chem Commun 51:15925–15927CrossRef Zhang Y, Barboiu M (2015) Dynameric asymmetric membranes for directional. Chem Commun 51:15925–15927CrossRef
25.
go back to reference Liu H, Huang JY, Li FY, Chen Z, Zhang KQ, Al-Deyab SS, Lai YK (2016) Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose 24:1129–1141CrossRef Liu H, Huang JY, Li FY, Chen Z, Zhang KQ, Al-Deyab SS, Lai YK (2016) Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose 24:1129–1141CrossRef
26.
go back to reference Hu L, Gao SJ, Zhu YZ, Zhang F, Jiang L, Jian J (2015) An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. J Mater Chem A 3:23477–23482CrossRef Hu L, Gao SJ, Zhu YZ, Zhang F, Jiang L, Jian J (2015) An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. J Mater Chem A 3:23477–23482CrossRef
27.
go back to reference Wang ZJ, Wang Y, Liu GJ (2016) Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew Chem Int Ed 55:1291–1294CrossRef Wang ZJ, Wang Y, Liu GJ (2016) Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew Chem Int Ed 55:1291–1294CrossRef
28.
go back to reference Yun J, Khan FA, Baik S (2017) Janus graphene oxide sponges for high-purity fast separation of both water-in-oil and oil-in-water emulsions. ACS Appl Mater Interfaces 9:16694–16703CrossRef Yun J, Khan FA, Baik S (2017) Janus graphene oxide sponges for high-purity fast separation of both water-in-oil and oil-in-water emulsions. ACS Appl Mater Interfaces 9:16694–16703CrossRef
31.
go back to reference Yang HC, Hou J, Chen V, Xu ZK (2016) Janus membranes: exploring duality for advanced separation. Angew Chem Int Ed 55:13398–13407CrossRef Yang HC, Hou J, Chen V, Xu ZK (2016) Janus membranes: exploring duality for advanced separation. Angew Chem Int Ed 55:13398–13407CrossRef
32.
go back to reference Yang HC, Liao KJ, Huang H, Wu QY, Wan LS, Xu ZK (2014) Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J Mater Chem A 2:10225–10230CrossRef Yang HC, Liao KJ, Huang H, Wu QY, Wan LS, Xu ZK (2014) Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J Mater Chem A 2:10225–10230CrossRef
33.
go back to reference Li JJ, Zhou YN, Luo ZH (2017) Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem Eng J 322:693–701CrossRef Li JJ, Zhou YN, Luo ZH (2017) Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem Eng J 322:693–701CrossRef
34.
go back to reference Jiang Y, Hou J, Xu J, Shan B (2017) Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon 115:477–485CrossRef Jiang Y, Hou J, Xu J, Shan B (2017) Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon 115:477–485CrossRef
35.
go back to reference Luo ZY, Lyu SS, Fu YX, Heng Y, Mo DC (2017) The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core–shell nanoparticles for oil/water separation. Appl Surf Sci 409:431–437CrossRef Luo ZY, Lyu SS, Fu YX, Heng Y, Mo DC (2017) The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core–shell nanoparticles for oil/water separation. Appl Surf Sci 409:431–437CrossRef
36.
go back to reference Gu JC, Xiao P, Chen J, Zhang JW, Huang YJ, Chen T (2014) Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl Mater Interfaces 6:16204–16209CrossRef Gu JC, Xiao P, Chen J, Zhang JW, Huang YJ, Chen T (2014) Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl Mater Interfaces 6:16204–16209CrossRef
37.
go back to reference Xu F, Zhang GX, Zhang FX, Zhang YS (2015) Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation. Appl Surf Sci 349:437–444CrossRef Xu F, Zhang GX, Zhang FX, Zhang YS (2015) Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation. Appl Surf Sci 349:437–444CrossRef
38.
go back to reference Zhu Z, Kelley MJ (2005) IR spectroscopic investigation of the effect of deep UV irradiation on PET films. Polymer 46:8883–8891CrossRef Zhu Z, Kelley MJ (2005) IR spectroscopic investigation of the effect of deep UV irradiation on PET films. Polymer 46:8883–8891CrossRef
39.
go back to reference Kordoghli B, Khiari R, Mhenni MF, Sakli F, Belgacem MN (2012) Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation. Appl Surf Sci 258:9737–9741CrossRef Kordoghli B, Khiari R, Mhenni MF, Sakli F, Belgacem MN (2012) Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation. Appl Surf Sci 258:9737–9741CrossRef
40.
go back to reference Cheema HA, El-Shafei A, Hauser PJ (2013) Conferring flame retardancy on cotton using novel halogen-free flame retardant bifunctional monomers: synthesis, characterizations and applications. Carbohydr Polym 92:885–893CrossRef Cheema HA, El-Shafei A, Hauser PJ (2013) Conferring flame retardancy on cotton using novel halogen-free flame retardant bifunctional monomers: synthesis, characterizations and applications. Carbohydr Polym 92:885–893CrossRef
41.
go back to reference Wang Y, Yang J, Wang L, Du K, Yin Q (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131CrossRef Wang Y, Yang J, Wang L, Du K, Yin Q (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131CrossRef
42.
go back to reference Babaahmadi V, Montazer M (2016) Reduced graphene oxide/SnO2 nanocomposite on PET surface: synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surf Asp 506:507–513CrossRef Babaahmadi V, Montazer M (2016) Reduced graphene oxide/SnO2 nanocomposite on PET surface: synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surf Asp 506:507–513CrossRef
43.
go back to reference Lu YX (2009) Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing. Appl Surf Sci 255:8430–8434CrossRef Lu YX (2009) Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing. Appl Surf Sci 255:8430–8434CrossRef
44.
go back to reference Golshaei P, Güven O (2017) Chemical modification of PET surface and subsequent graft copolymerization with poly(N-isopropylacrylamide). React Funct Polym 118:26–34CrossRef Golshaei P, Güven O (2017) Chemical modification of PET surface and subsequent graft copolymerization with poly(N-isopropylacrylamide). React Funct Polym 118:26–34CrossRef
45.
go back to reference Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123CrossRef Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123CrossRef
46.
go back to reference Pietre MK, Almeida LCP, Landers R, Vinhas RCG, Luna FJ (2010) H3PO4-and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production. React Kinet Mech Cat 2:269–280 Pietre MK, Almeida LCP, Landers R, Vinhas RCG, Luna FJ (2010) H3PO4-and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production. React Kinet Mech Cat 2:269–280
47.
go back to reference Puziy AM, Poddubnaya OI, Ziatdinov AM (2006) On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon. Appl Surf Sci 252:8036–8038CrossRef Puziy AM, Poddubnaya OI, Ziatdinov AM (2006) On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon. Appl Surf Sci 252:8036–8038CrossRef
48.
go back to reference Tian XL, Li J, Wang X (2012) Anisotropic liquid penetration arising from a cross-sectional wettability gradient. Soft Matter 8:2633–2637CrossRef Tian XL, Li J, Wang X (2012) Anisotropic liquid penetration arising from a cross-sectional wettability gradient. Soft Matter 8:2633–2637CrossRef
49.
go back to reference Tian XL, Jin H, Sainio J, Ras RHA, Ikkala O (2014) Droplet and fluid gating by biomimetic janus membranes. Adv Funct Mater 24:6023–6028CrossRef Tian XL, Jin H, Sainio J, Ras RHA, Ikkala O (2014) Droplet and fluid gating by biomimetic janus membranes. Adv Funct Mater 24:6023–6028CrossRef
50.
go back to reference Guo TQ, Han KY, Heng LP, Cao MY (2015) Ordered porous structure hybrid films generated by breath figures for directional water penetration. RSC Adv 5:88471–88476CrossRef Guo TQ, Han KY, Heng LP, Cao MY (2015) Ordered porous structure hybrid films generated by breath figures for directional water penetration. RSC Adv 5:88471–88476CrossRef
Metadata
Title
Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil–water separation
Authors
Cheng Zhang
Shuai He
Dingfei Wang
Fang Xu
Fengxiu Zhang
Guangxian Zhang
Publication date
02-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2659-8

Other articles of this Issue 20/2018

Journal of Materials Science 20/2018 Go to the issue

Premium Partners