Skip to main content
Top
Published in: Journal of Materials Science 8/2017

29-12-2016 | Original Paper

Facile preparation of superamphiphobic phosphate–Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance

Authors: Tianchi Chen, Wei Yan, Liu Hongtao, Wei Zhu, Kaijin Guo, Jiande Li

Published in: Journal of Materials Science | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a facile, low-cost, and fast method for preparing superamphiphobic surface with water contact angle and rapeseed oil contact angle of 160° and 153° on steel substrate. The fabrication process is composed of the phosphate, Cu co-deposition in phosphating bath and the low surface energy materials modification by 1H,1H,2H,2H-peruorodecyltriisopropoxysilane (FAS-17). Contact angle measurement, X-ray diffraction, scanning electron microscopy equipped with energy-dispersive spectrometry, X-ray photoelectron spectroscopy, and electrochemical workstation were carried out to investigate the surface wettability, chemical composition, morphology, and anti-corrosion performance. Results show that the optimal CuSO4·5H2O concentration for the surface to achieve superamphiphobicity is 6 g L−1, and the prepared surface exhibits excellent mechanical abrasion resistance on 600 grit SiC sand paper. Moreover, the dynamic frosting–defrosting experiments indicated that the surface has a good anti-frosting ability. The potentiodynamic polarization proves that the superhydrophobic surface can protect the steel substrate from corrosion solution. Meanwhile the surface also shows a good chemical stability under different pH values and excellent self-cleaning ability in both muddy water and lubricating oil.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Truesdell R, Mammoli A, Vorobieff P et al (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4):044504-044504-4 Truesdell R, Mammoli A, Vorobieff P et al (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4):044504-044504-4
2.
go back to reference Isimjan TT, Wang T, Rohani S (2012) A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chem Eng J 210(6):182–187CrossRef Isimjan TT, Wang T, Rohani S (2012) A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface. Chem Eng J 210(6):182–187CrossRef
3.
go back to reference Chen Y, Zhang Y, Shi L, et al (2012) Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl Phys Lett 101(3):033701-033701-4 Chen Y, Zhang Y, Shi L, et al (2012) Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl Phys Lett 101(3):033701-033701-4
4.
go back to reference Zeng J, Wang B, Zhang Y et al (2014) Strong amphiphobic porous films with oily-self-cleaning property beyond nature. Chem Lett 43(10):1566–1568CrossRef Zeng J, Wang B, Zhang Y et al (2014) Strong amphiphobic porous films with oily-self-cleaning property beyond nature. Chem Lett 43(10):1566–1568CrossRef
5.
go back to reference Cao L, Jones AK, Sikka VK et al (2009) Anti-icing superhydrophobic coatings. Langmuir 25(21):12444–12448CrossRef Cao L, Jones AK, Sikka VK et al (2009) Anti-icing superhydrophobic coatings. Langmuir 25(21):12444–12448CrossRef
6.
go back to reference Cheng YT, Rodak DE (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86(86):144101-144101-3 Cheng YT, Rodak DE (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86(86):144101-144101-3
7.
go back to reference Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):36CrossRef Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):36CrossRef
8.
go back to reference Bhushan B, Her EK (2010) Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26(11):8207–8217CrossRef Bhushan B, Her EK (2010) Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26(11):8207–8217CrossRef
9.
go back to reference Sun M, Watson GS, Zheng Y et al (2009) Wetting properties on nanostructured surfaces of cicada wings. J Exp Biol 212(19):3148–3155CrossRef Sun M, Watson GS, Zheng Y et al (2009) Wetting properties on nanostructured surfaces of cicada wings. J Exp Biol 212(19):3148–3155CrossRef
10.
go back to reference Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994CrossRef Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994CrossRef
11.
go back to reference King G, Cassie ABD, Baxter S (1940) Propagation of temperature changes through textiles in humid atmospheres. Trans Faraday Soc 35:445–465CrossRef King G, Cassie ABD, Baxter S (1940) Propagation of temperature changes through textiles in humid atmospheres. Trans Faraday Soc 35:445–465CrossRef
12.
go back to reference Nishino T, Meguro M, Nakamae K et al (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15(13):4321–4323CrossRef Nishino T, Meguro M, Nakamae K et al (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15(13):4321–4323CrossRef
13.
go back to reference Brixner LH, Chen HY (1983) On the structural and luminescent properties of the M’LnTaO/sub 4/rare earth tantalates. J Electrochem Soc 130(12):2435–2443CrossRef Brixner LH, Chen HY (1983) On the structural and luminescent properties of the M’LnTaO/sub 4/rare earth tantalates. J Electrochem Soc 130(12):2435–2443CrossRef
14.
go back to reference Melchers RE, Jeffrey RJ (2008) Probabilistic models for steel corrosion loss and pitting of marine infrastructure. Reliab Eng Syst Safe 93(3):423–432CrossRef Melchers RE, Jeffrey RJ (2008) Probabilistic models for steel corrosion loss and pitting of marine infrastructure. Reliab Eng Syst Safe 93(3):423–432CrossRef
15.
go back to reference Almeida E (2000) Surface treatments and coatings for metals. A general overview. 1. Surface treatments, surface preparation, and the nature of coatings. Ind Eng Chem Res 40(1):3–14CrossRef Almeida E (2000) Surface treatments and coatings for metals. A general overview. 1. Surface treatments, surface preparation, and the nature of coatings. Ind Eng Chem Res 40(1):3–14CrossRef
16.
go back to reference Banczek EP, Rodrigues PRP, Costa I (2006) Investigation on the effect of benzotriazole on the phosphating of carbon steel. Surf Coat Technol 201(6):3701–3708CrossRef Banczek EP, Rodrigues PRP, Costa I (2006) Investigation on the effect of benzotriazole on the phosphating of carbon steel. Surf Coat Technol 201(6):3701–3708CrossRef
17.
go back to reference Narayanan TSNS (2005) Surface pretreatment by phosphate conversion coatings—a review. Rev Adv Mater Sci 9(2):130–177 Narayanan TSNS (2005) Surface pretreatment by phosphate conversion coatings—a review. Rev Adv Mater Sci 9(2):130–177
18.
go back to reference Takeuchi SMT, Azambuja DS, Saliba-Silva AM et al (2006) Corrosion protection of NdFeB magnets by phosphating with tungstate incorporation. Surf Coat Technol 200(24):6826–6831CrossRef Takeuchi SMT, Azambuja DS, Saliba-Silva AM et al (2006) Corrosion protection of NdFeB magnets by phosphating with tungstate incorporation. Surf Coat Technol 200(24):6826–6831CrossRef
19.
go back to reference Yan W, Liu H et al (2016) Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties. J Vac Sci Technol A 34(4):041401CrossRef Yan W, Liu H et al (2016) Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties. J Vac Sci Technol A 34(4):041401CrossRef
20.
go back to reference Wei Y, Liu H, Zhu W (2015) Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process. Rsc Adv 5(125):103000–103012CrossRef Wei Y, Liu H, Zhu W (2015) Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process. Rsc Adv 5(125):103000–103012CrossRef
21.
go back to reference Liu H, Wang X, Ji H (2014) Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating. Appl Surf Sci 288(288):341–348CrossRef Liu H, Wang X, Ji H (2014) Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating. Appl Surf Sci 288(288):341–348CrossRef
22.
go back to reference Bo W, Ming Z, Jian L et al (2009) Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl Surf Sci 256(1):61–66CrossRef Bo W, Ming Z, Jian L et al (2009) Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl Surf Sci 256(1):61–66CrossRef
23.
go back to reference Jiang C, Xiao G, Zhang X et al (2015) Formation and corrosion resistance of a phosphate chemical conversion coating on medium carbon low alloy steel. New J Chem 150(12):65–68 Jiang C, Xiao G, Zhang X et al (2015) Formation and corrosion resistance of a phosphate chemical conversion coating on medium carbon low alloy steel. New J Chem 150(12):65–68
24.
go back to reference Chandrasekaran K, Kulandaivelu R, Min HL (2014) Improving the reactivity and receptivity of alloy and tool steels for phosphate conversion coatings: role of surface mechanical attrition treatment. Ind Eng Chem Res 53:20124–20138CrossRef Chandrasekaran K, Kulandaivelu R, Min HL (2014) Improving the reactivity and receptivity of alloy and tool steels for phosphate conversion coatings: role of surface mechanical attrition treatment. Ind Eng Chem Res 53:20124–20138CrossRef
25.
go back to reference Liang C (2014) Effect of additives on the properties of phosphate conversion coating on electrogalvanized steel sheet. Corros Sci 83(7):137–146 Liang C (2014) Effect of additives on the properties of phosphate conversion coating on electrogalvanized steel sheet. Corros Sci 83(7):137–146
26.
go back to reference Akhtar A, Wong K, Mitchell K (2006) The effect of pH and role of Ni2+ in zinc phosphating of 2024Al alloyPart I: macroscopic studies with XPS and SEM. Appl Surf Sci 253(2):493–501CrossRef Akhtar A, Wong K, Mitchell K (2006) The effect of pH and role of Ni2+ in zinc phosphating of 2024Al alloyPart I: macroscopic studies with XPS and SEM. Appl Surf Sci 253(2):493–501CrossRef
27.
go back to reference Liu P, Cao L, Zhao W et al (2015) Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons. Appl Surf Sci 324(1):576–583CrossRef Liu P, Cao L, Zhao W et al (2015) Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons. Appl Surf Sci 324(1):576–583CrossRef
28.
go back to reference Long J, Zhong M, Zhang H et al (2015) Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J Colloid Interface Sci 441:1–9CrossRef Long J, Zhong M, Zhang H et al (2015) Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J Colloid Interface Sci 441:1–9CrossRef
29.
go back to reference Khorsand S, Raeissi K, Ashrafizadeh F et al (2015) Super-hydrophobic nickel–cobalt alloy coating with micro-nano flower-like structure. Chem Eng J 273:638–646CrossRef Khorsand S, Raeissi K, Ashrafizadeh F et al (2015) Super-hydrophobic nickel–cobalt alloy coating with micro-nano flower-like structure. Chem Eng J 273:638–646CrossRef
30.
go back to reference She Z, Li Q, Wang Z et al (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228(28):415–424CrossRef She Z, Li Q, Wang Z et al (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228(28):415–424CrossRef
31.
go back to reference Sun Q, Liu H, Chen T et al (2016) Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath. Appl Surf Sci 369:277–287CrossRef Sun Q, Liu H, Chen T et al (2016) Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath. Appl Surf Sci 369:277–287CrossRef
32.
go back to reference Xiu Y, Liu Y, Hess DW et al (2010) Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21(15):155705CrossRef Xiu Y, Liu Y, Hess DW et al (2010) Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21(15):155705CrossRef
33.
go back to reference Wang L, Gong Q, Zhan S et al (2016) Robust anti-icing performance of a flexible superhydrophobic surface. Adv Mater 28:7729–7735CrossRef Wang L, Gong Q, Zhan S et al (2016) Robust anti-icing performance of a flexible superhydrophobic surface. Adv Mater 28:7729–7735CrossRef
34.
go back to reference Zhang S, Huang J, Tang Y et al (2016) Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures. Small. doi:10.1002/smll.201600687 Zhang S, Huang J, Tang Y et al (2016) Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures. Small. doi:10.​1002/​smll.​201600687
Metadata
Title
Facile preparation of superamphiphobic phosphate–Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance
Authors
Tianchi Chen
Wei Yan
Liu Hongtao
Wei Zhu
Kaijin Guo
Jiande Li
Publication date
29-12-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0710-1

Other articles of this Issue 8/2017

Journal of Materials Science 8/2017 Go to the issue

Premium Partners