Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2023

19-04-2023

Failure of Unidirectional Fiber Reinforced Composites: A Case Study in Strength of Materials

Author: R. Talreja

Published in: Mechanics of Composite Materials | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The traditional approach of strength of materials applied to failure of unidirectional fiber reinforced composites is examined in view of the failure mechanisms observed. While the elastic limit of isotropic materials such as metals is given by the measured yield strength and reflects the manifestation of the underlying crystalline slip processes that is not the case for unidirectional composites that are orthotropic and have different independent mechanisms operative under axial tension, axial compression, transverse tension, transverse compression, and in-plane shear. The paper discusses why the generalization of yield theories of isotropic metals to textured metals of orthotropic symmetry cannot be used for describing failure of unidirectional composites. Furthermore, the failure criteria proposed in the literature to describe interactions under combined loading are scrutinized to clarify their inadequacy to treat those interactions. The use of tractions on an assumed failure plane to formulate failure criteria is also discussed as without basis in the failure mechanisms observed. Finally, a way forward for physical modeling of failure in unidirectional composites is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Morley, A., Strength of materials, Longmans, London (1920). Morley, A., Strength of materials, Longmans, London (1920).
2.
go back to reference S. P. Timoshenko, History of Strength of Materials, McGraw Hill, New York (1953). S. P. Timoshenko, History of Strength of Materials, McGraw Hill, New York (1953).
3.
go back to reference Z. Zhang, C. Shao, S.Wang, X. Luo, K. Zheng, and H. M. Urbassek, “Interaction of dislocations and interfaces in crystalline heterostructures: A review of atomistic studies,” Crystals, 9, No. 11, 584 (2019). Z. Zhang, C. Shao, S.Wang, X. Luo, K. Zheng, and H. M. Urbassek, “Interaction of dislocations and interfaces in crystalline heterostructures: A review of atomistic studies,” Crystals, 9, No. 11, 584 (2019).
4.
go back to reference R. Hill, “A theory of the yielding and plastic flow of anisotropic materials,” Proc. R. Soc. A, 193, 281-297 (1948). R. Hill, “A theory of the yielding and plastic flow of anisotropic materials,” Proc. R. Soc. A, 193, 281-297 (1948).
5.
go back to reference V. D. Azzi and S. Tsai, “Anisotropic strength of composites,” Experimental Mechanics, 5, 283-288 (1965).CrossRef V. D. Azzi and S. Tsai, “Anisotropic strength of composites,” Experimental Mechanics, 5, 283-288 (1965).CrossRef
6.
go back to reference M. Fuwa, A.R., Bunsell, and B. Harris, “Tensile failure mechanisms in carbon fibre reinforced plastics,” J. Mater. Sci., 10, 2062-2070 (1975). M. Fuwa, A.R., Bunsell, and B. Harris, “Tensile failure mechanisms in carbon fibre reinforced plastics,” J. Mater. Sci., 10, 2062-2070 (1975).
7.
go back to reference D. Purslow, “Some fundamental aspects of composites fractography,” Composites, 12, 241-247 (1981).CrossRef D. Purslow, “Some fundamental aspects of composites fractography,” Composites, 12, 241-247 (1981).CrossRef
8.
go back to reference S. Mahesh, S. L. Phoenix, and I. J. Beyerlein, “Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix,” Int. J. Fracture, 115, No.1, 41-85 (2002).CrossRef S. Mahesh, S. L. Phoenix, and I. J. Beyerlein, “Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix,” Int. J. Fracture, 115, No.1, 41-85 (2002).CrossRef
9.
go back to reference D. R. B. Aroush, E. Maire, C. Gauthier, S. Youssef, P. Cloetens, and H. D. Wagner, “A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography,” Compos. Sci. and Technol. 66, No.10, 1348-1353 (2006).CrossRef D. R. B. Aroush, E. Maire, C. Gauthier, S. Youssef, P. Cloetens, and H. D. Wagner, “A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography,” Compos. Sci. and Technol. 66, No.10, 1348-1353 (2006).CrossRef
10.
go back to reference B. W. Rosen, “Mechanics of composite strengthening”, Ch. 3 in: Fiber Composite Materials, Am Soc Metals, Metals Park, Ohio (1965). B. W. Rosen, “Mechanics of composite strengthening”, Ch. 3 in: Fiber Composite Materials, Am Soc Metals, Metals Park, Ohio (1965).
11.
go back to reference A. S. Argon, “Fracture of Composites”, In: Treatise of Materials Science and Technology, Vol. 1, Academic Pres, New York, 79-114 (1972). A. S. Argon, “Fracture of Composites”, In: Treatise of Materials Science and Technology, Vol. 1, Academic Pres, New York, 79-114 (1972).
12.
go back to reference B. Budiansky, “Micromechanics,” Computers and Structures, 16, 1-4 (1983).CrossRef B. Budiansky, “Micromechanics,” Computers and Structures, 16, 1-4 (1983).CrossRef
13.
go back to reference S. Pimenta, R. Gutkin, S.T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. and Technol., 69, No.7–8, 948–955 (2009).CrossRef S. Pimenta, R. Gutkin, S.T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. and Technol., 69, No.7–8, 948–955 (2009).CrossRef
14.
go back to reference B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Physics of Solids, 41, No. 1, 183-211 (1993).CrossRef B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Physics of Solids, 41, No. 1, 183-211 (1993).CrossRef
15.
go back to reference P. Kulkarni, K. D. Mali, and S. Singh, “An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites,” Compos., Part A, 137, 106013 (2020). P. Kulkarni, K. D. Mali, and S. Singh, “An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites,” Compos., Part A, 137, 106013 (2020).
16.
go back to reference C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks,” Compos. Sci. and Technol., 59, No.12, 1779-1788 (1999).CrossRef C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks,” Compos. Sci. and Technol., 59, No.12, 1779-1788 (1999).CrossRef
17.
go back to reference K. Oguni, C. Y. Tan, and G. Ravichandran, “Failure mode transition in unidirectional E-glass/vinylester composites under multiaxial compression,” J. Compos. Mater., 34, No. 24, 2081-2097 (2000).CrossRef K. Oguni, C. Y. Tan, and G. Ravichandran, “Failure mode transition in unidirectional E-glass/vinylester composites under multiaxial compression,” J. Compos. Mater., 34, No. 24, 2081-2097 (2000).CrossRef
18.
go back to reference T. J. Vogler, S. Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids and Structures, 37, No.12, 1765-1791 (2000).CrossRef T. J. Vogler, S. Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids and Structures, 37, No.12, 1765-1791 (2000).CrossRef
19.
go back to reference S. Basu, A. M. Waas, and D. R. Ambur, “Compressive failure of fiber composites under multi-axial loading,” Journal of the Mechanics and Physics of Solids, 54, 611-634 (2006).CrossRef S. Basu, A. M. Waas, and D. R. Ambur, “Compressive failure of fiber composites under multi-axial loading,” Journal of the Mechanics and Physics of Solids, 54, 611-634 (2006).CrossRef
20.
go back to reference R. Talreja and C. V. Singh, Damage and Failure of Composite Materials, Cambridge University Press, Cambridge (2012).CrossRef R. Talreja and C. V. Singh, Damage and Failure of Composite Materials, Cambridge University Press, Cambridge (2012).CrossRef
21.
go back to reference L. E. Asp, L. A. Berglund, and P. Gudmundson, “Effects of a composite-like stress state on the fracture of epoxies,” Compos. Sci. and Technol., 53, 27-37 (1995).CrossRef L. E. Asp, L. A. Berglund, and P. Gudmundson, “Effects of a composite-like stress state on the fracture of epoxies,” Compos. Sci. and Technol., 53, 27-37 (1995).CrossRef
22.
go back to reference L. E. Asp, L. A. Berglund, and R. Talreja, “Prediction of matrix initiated transverse failure in polymer composites,” Composites Science and Technology, 56, 1089-1097 (1996).CrossRef L. E. Asp, L. A. Berglund, and R. Talreja, “Prediction of matrix initiated transverse failure in polymer composites,” Composites Science and Technology, 56, 1089-1097 (1996).CrossRef
23.
go back to reference L. E. Asp, L. A. Berglund, and R. Talreja, “A criterion for crack initiation in glassy polymers subjected to a compositelike stress state,” Compos. Sci. and Technol., 56, 1291-1301 (1996).CrossRef L. E. Asp, L. A. Berglund, and R. Talreja, “A criterion for crack initiation in glassy polymers subjected to a compositelike stress state,” Compos. Sci. and Technol., 56, 1291-1301 (1996).CrossRef
24.
go back to reference S.A. Elnekhaily and R. Talreja, “Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution,” Compos. Sci. and Technol., 155, 22-32 (2018).CrossRef S.A. Elnekhaily and R. Talreja, “Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution,” Compos. Sci. and Technol., 155, 22-32 (2018).CrossRef
25.
go back to reference A. Sudhir and R. Talreja, “Simulation of manufacturing induced fiber clustering and matrix voids and their effect on transverse crack formation in unidirectional composites,” Compos., Part A, 127, 105620 (2019). A. Sudhir and R. Talreja, “Simulation of manufacturing induced fiber clustering and matrix voids and their effect on transverse crack formation in unidirectional composites,” Compos., Part A, 127, 105620 (2019).
26.
go back to reference L. Zhuang, R. Talreja, and J. Varna, “Transverse crack formation in unidirectional composites by linking of fibre/matrix debond cracks,” Compos., Part A, 107, 294-303 (2018).CrossRef L. Zhuang, R. Talreja, and J. Varna, “Transverse crack formation in unidirectional composites by linking of fibre/matrix debond cracks,” Compos., Part A, 107, 294-303 (2018).CrossRef
27.
go back to reference L. Zhuang, A. Pupurs, J. Varna, R. Talreja, and Z. Ayadi, “Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites under transverse loading,” Compos., Part A, 109, 463-471 (2018).CrossRef L. Zhuang, A. Pupurs, J. Varna, R. Talreja, and Z. Ayadi, “Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites under transverse loading,” Compos., Part A, 109, 463-471 (2018).CrossRef
28.
go back to reference E. K. Gamstedt and B. A. Sjogren, “Micromechanisms in tension-compression fatigue composite laminates containing transverse plies,” Compos. Sci. and Technol., 59,167-178 (1999).CrossRef E. K. Gamstedt and B. A. Sjogren, “Micromechanisms in tension-compression fatigue composite laminates containing transverse plies,” Compos. Sci. and Technol., 59,167-178 (1999).CrossRef
29.
go back to reference S. A. Elnekhaily and R. Talreja, “Effect of axial shear and transverse tension on early failure events in unidirectional polymer matrix composites,” Compos., Part A, 119, 275-282 (2019).CrossRef S. A. Elnekhaily and R. Talreja, “Effect of axial shear and transverse tension on early failure events in unidirectional polymer matrix composites,” Compos., Part A, 119, 275-282 (2019).CrossRef
30.
go back to reference C. Gonzalez and J. LLorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. and Technol., 67, 2795-2806 (2007). C. Gonzalez and J. LLorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. and Technol., 67, 2795-2806 (2007).
31.
go back to reference Y. Hu, N. K. Kar, and S. R. Nutt, “Transverse compression failure of unidirectional composites,” Polymer Compos., 36, No. 4, 756-766 (2015).CrossRef Y. Hu, N. K. Kar, and S. R. Nutt, “Transverse compression failure of unidirectional composites,” Polymer Compos., 36, No. 4, 756-766 (2015).CrossRef
32.
go back to reference J. Gu, J. P. Chen, L. Su, and K. Li, “A theoretical and experimental assessment of 3D macroscopic failure criteria for predicting pure inter-fiber fracture of transversely isotropic UD composites,” Compos. Struct., 259, 113466 (2021).CrossRef J. Gu, J. P. Chen, L. Su, and K. Li, “A theoretical and experimental assessment of 3D macroscopic failure criteria for predicting pure inter-fiber fracture of transversely isotropic UD composites,” Compos. Struct., 259, 113466 (2021).CrossRef
33.
go back to reference G. Terry, “A comparative investigation of some methods of unidirectional, in-plane shear characterization of composite materials,” Composites, 10, 233-237 (1979).CrossRef G. Terry, “A comparative investigation of some methods of unidirectional, in-plane shear characterization of composite materials,” Composites, 10, 233-237 (1979).CrossRef
34.
go back to reference W. van Paepegem, I. de Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part I: Experimental results,” Compos. Sci. and Technol., 66, 1455-1464 (2006).CrossRef W. van Paepegem, I. de Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part I: Experimental results,” Compos. Sci. and Technol., 66, 1455-1464 (2006).CrossRef
35.
go back to reference F. Pierron and A. Vautrin, “New ideas on measurement of the in-plane shear strength of unidirectional composites,” J. Compos. Mater., 31, 889-895 (1997).CrossRef F. Pierron and A. Vautrin, “New ideas on measurement of the in-plane shear strength of unidirectional composites,” J. Compos. Mater., 31, 889-895 (1997).CrossRef
36.
go back to reference P. A. Carraro and M. Quaresimin, “A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading,” Compos. Sci. and Technol., 99, 154-163 (2014).CrossRef P. A. Carraro and M. Quaresimin, “A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading,” Compos. Sci. and Technol., 99, 154-163 (2014).CrossRef
37.
go back to reference M. Quaresimin and P. A. Carraro, “Damage initiation and evolution in glass/epoxy tubes subjected to combined tension– torsion fatigue loading,” Int. J. Fatigue, 63, 25-35 (2014).CrossRef M. Quaresimin and P. A. Carraro, “Damage initiation and evolution in glass/epoxy tubes subjected to combined tension– torsion fatigue loading,” Int. J. Fatigue, 63, 25-35 (2014).CrossRef
38.
go back to reference O. Redon, “Fatigue damage development and failure in unidirectional and angle-ply glass fibre/carbon fibre hybrid laminates”, Technical Report Risø-R-1168, Risø National Laboratory, Roskilde, Denmark (2000). O. Redon, “Fatigue damage development and failure in unidirectional and angle-ply glass fibre/carbon fibre hybrid laminates”, Technical Report Risø-R-1168, Risø National Laboratory, Roskilde, Denmark (2000).
39.
go back to reference A. Plumtree and L. Shi, “Fatigue damage evolution in off-axis unidirectional CFRP,” Int. J. Fatigue, 24, 155-159 (2002).CrossRef A. Plumtree and L. Shi, “Fatigue damage evolution in off-axis unidirectional CFRP,” Int. J. Fatigue, 24, 155-159 (2002).CrossRef
40.
go back to reference S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).CrossRef S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).CrossRef
41.
go back to reference I. I. Goldenblatt and V. A. Kopnov, “Strength criteria for anisotropic materials,” Izvestia Academy Nauk USSR, Mechanika, 6, 77–83 (1965). I. I. Goldenblatt and V. A. Kopnov, “Strength criteria for anisotropic materials,” Izvestia Academy Nauk USSR, Mechanika, 6, 77–83 (1965).
42.
go back to reference Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef
43.
go back to reference A. Puck and H. Schumann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. and Technol., 58, 1045-1067 (1998).CrossRef A. Puck and H. Schumann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. and Technol., 58, 1045-1067 (1998).CrossRef
44.
go back to reference C. G. Davila, P. P. Camanho, and C. A. Rose, “Failure criteria for FRP laminates,” J. Compos. Mater., 39, No. 4, 323-345 (2005).CrossRef C. G. Davila, P. P. Camanho, and C. A. Rose, “Failure criteria for FRP laminates,” J. Compos. Mater., 39, No. 4, 323-345 (2005).CrossRef
45.
go back to reference S. T. Pinho, L. Iannucci and P. Robinson, “Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development,” Compos., Part A, 37, No. 1, 63-73 (2006).CrossRef S. T. Pinho, L. Iannucci and P. Robinson, “Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development,” Compos., Part A, 37, No. 1, 63-73 (2006).CrossRef
46.
go back to reference R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Compos. Sci. and Technol., 105, 190-201 (2014).CrossRef R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Compos. Sci. and Technol., 105, 190-201 (2014).CrossRef
47.
go back to reference J. Segurado and J. LLorca, “A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites,” Acta Materialia, 53, No.18, 4931-4942 (2005). J. Segurado and J. LLorca, “A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites,” Acta Materialia, 53, No.18, 4931-4942 (2005).
48.
go back to reference J. Segurado and J. LLorca, “Computational micromechanics of composites: the effect of particle spatial distribution,” Mech. Mater., 38, No. 8-10, 873-883 (2006). J. Segurado and J. LLorca, “Computational micromechanics of composites: the effect of particle spatial distribution,” Mech. Mater., 38, No. 8-10, 873-883 (2006).
49.
go back to reference E. Totry, C. González, and J. LLorca, J., “Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear,” Compos. Sci. and Technol., 68, No. 3-4, 829-839 (2008). E. Totry, C. González, and J. LLorca, J., “Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear,” Compos. Sci. and Technol., 68, No. 3-4, 829-839 (2008).
50.
go back to reference M. I. Okereke, A. I. Akpoyomare, and M. S. Bingley, “Virtual testing of advanced composites, cellular materials and biomaterials: a Review,” Compos., Part B, 60, 637-662 (2014).CrossRef M. I. Okereke, A. I. Akpoyomare, and M. S. Bingley, “Virtual testing of advanced composites, cellular materials and biomaterials: a Review,” Compos., Part B, 60, 637-662 (2014).CrossRef
51.
go back to reference A. R. Melro, P. P. Camanho, F. A. Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I–Constitutive modelling,” Int. J. Solids and Structures, 50, No.11-12, 1897-1905 (2013).CrossRef A. R. Melro, P. P. Camanho, F. A. Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I–Constitutive modelling,” Int. J. Solids and Structures, 50, No.11-12, 1897-1905 (2013).CrossRef
52.
go back to reference A. Neogi, A., N. Mitra, and R. Talreja, “Cavitation in epoxies under composite-like stress states,” Compos., Part A, 106, 52-58 (2018). A. Neogi, A., N. Mitra, and R. Talreja, “Cavitation in epoxies under composite-like stress states,” Compos., Part A, 106, 52-58 (2018).
53.
go back to reference R. M. Christensen, “Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results,” Compos. Sci. and Technol., 182, 107718 (2019).CrossRef R. M. Christensen, “Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results,” Compos. Sci. and Technol., 182, 107718 (2019).CrossRef
54.
go back to reference E. Correa, V. Mantič, and F. París, “A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres,” Compos. Sci. and Technol., 68, No. 9, 2010-2021 (2008).CrossRef E. Correa, V. Mantič, and F. París, “A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres,” Compos. Sci. and Technol., 68, No. 9, 2010-2021 (2008).CrossRef
55.
go back to reference R. Talreja, and A. M. Waas, “Concepts and definitions related to mechanical behavior of fiber reinforced composite materials,” Compos. Sci. and Technol., 217, 109081 (2022).CrossRef R. Talreja, and A. M. Waas, “Concepts and definitions related to mechanical behavior of fiber reinforced composite materials,” Compos. Sci. and Technol., 217, 109081 (2022).CrossRef
Metadata
Title
Failure of Unidirectional Fiber Reinforced Composites: A Case Study in Strength of Materials
Author
R. Talreja
Publication date
19-04-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10091-0

Other articles of this Issue 2/2023

Mechanics of Composite Materials 2/2023 Go to the issue

Premium Partners