Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Wireless Personal Communications 2/2022

22-06-2022

Fall Detection Using LSTM and Transfer Learning

Authors: Ayesha Butt, Sanam Narejo, Muhammad Rizwan Anjum, Muhammad Usman Yonus, Mashal Memon, Arbab Ali Samejo

Published in: Wireless Personal Communications | Issue 2/2022

Login to get access
share
SHARE

Abstract

Prior detection for high risk of falls in elderly people is an essential and challenging task. Wearable sensors have already proven as beneficial resource in monitoring daily living activities. Sensors worn on body such as gyroscope, accelerometer can provide a valuable input into detection of fall. In our research, we have implemented the deep learning methods, and analyzed that they are suitable for extracted features from sensors data i.e. accelerometer, gyroscope that evaluate fall risks. We used a publicly available dataset that is based on different daily living activities of elderly people. Furthermore, to conduct the comparative analysis, the performance of two deep learning architectures, the Long short-term memory (LSTM) and CNN based Transfer learning is considered. We also observed that CNN-transfer learning resulted in optimal performance quantitatively bearing 98% accuracy, we summarized that deep learning architectures are very effective in multi-task learning and are capable to effectively predict the high risk of human falls in the terms of wearable sensors.
Literature
1.
go back to reference Ba, T., Li, S., & Wei, Y. (2021). A data-driven machine learning integrated wearable medical sensor framework for elderly care service. Measurement, 167, 108383. CrossRef Ba, T., Li, S., & Wei, Y. (2021). A data-driven machine learning integrated wearable medical sensor framework for elderly care service. Measurement, 167, 108383. CrossRef
2.
go back to reference Anudeep, P., Mourya, P., & Anandhi, T. (2021). Parkinson’s disease detection using machine learning techniques. Advances in Electronics, Communication and Computing (pp. 483–493). Springer. CrossRef Anudeep, P., Mourya, P., & Anandhi, T. (2021). Parkinson’s disease detection using machine learning techniques. Advances in Electronics, Communication and Computing (pp. 483–493). Springer. CrossRef
3.
go back to reference Javed, A. R., Fahad, L. G., Farhan, A. A., Abbas, S., Srivastava, G., Parizi, R. M., & Khan, M. S. (2021). Automated cognitive health assessment in smart homes using machine learning. Sustainable Cities and Society, 65, 102572. CrossRef Javed, A. R., Fahad, L. G., Farhan, A. A., Abbas, S., Srivastava, G., Parizi, R. M., & Khan, M. S. (2021). Automated cognitive health assessment in smart homes using machine learning. Sustainable Cities and Society, 65, 102572. CrossRef
4.
go back to reference Gjoreski, H., Stankoski, S., Kiprijanovska, I., Nikolovska, A., Mladenovska, N., Trajanoska, M., Velichkovska, B., Gjoreski, M., Luštrek, M. & Gams, M. (2020). Wearable sensors data-fusion and machine-learning method for fall detection and activity recognition. In  Challenges and Trends in Multimodal Fall Detection for Healthcare (pp. 81–96). Springer. Gjoreski, H., Stankoski, S., Kiprijanovska, I., Nikolovska, A., Mladenovska, N., Trajanoska, M., Velichkovska, B., Gjoreski, M., Luštrek, M. & Gams, M. (2020). Wearable sensors data-fusion and machine-learning method for fall detection and activity recognition. In  Challenges and Trends in Multimodal Fall Detection for Healthcare (pp. 81–96). Springer.
5.
go back to reference Zurbuchen, N., Bruegger, P., & Wilde, A. (2020). A comparison of machine learning algorithms for fall detection using wearable sensors. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 427–431). IEEE. Zurbuchen, N., Bruegger, P., & Wilde, A. (2020). A comparison of machine learning algorithms for fall detection using wearable sensors. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 427–431). IEEE.
6.
go back to reference Hussain, F., Hussain, F., Ehatisham-ul-Haq, M., & Azam, M. A. (2019). Activity-aware fall detection and recognition based on wearable sensors. IEEE Sensors Journal, 19(12), 4528–4536. CrossRef Hussain, F., Hussain, F., Ehatisham-ul-Haq, M., & Azam, M. A. (2019). Activity-aware fall detection and recognition based on wearable sensors. IEEE Sensors Journal, 19(12), 4528–4536. CrossRef
7.
go back to reference Santoyo-Ramón, J. A., Casilari, E., & Cano-García, J. M. (2018). Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection with supervised learning. Sensors, 18(4), 1155. CrossRef Santoyo-Ramón, J. A., Casilari, E., & Cano-García, J. M. (2018). Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection with supervised learning. Sensors, 18(4), 1155. CrossRef
8.
go back to reference Saleh, M., & Jeannès, R. L. B. (2019). Elderly fall detection using wearable sensors: A low cost highly accurate algorithm. IEEE Sensors Journal, 19(8), 3156–3164. CrossRef Saleh, M., & Jeannès, R. L. B. (2019). Elderly fall detection using wearable sensors: A low cost highly accurate algorithm. IEEE Sensors Journal, 19(8), 3156–3164. CrossRef
9.
go back to reference De Miguel, K., Brunete, A., Hernando, M., & Gambao, E. (2017). Home camera-based fall detection system for the elderly. Sensors, 17(12), 2864. CrossRef De Miguel, K., Brunete, A., Hernando, M., & Gambao, E. (2017). Home camera-based fall detection system for the elderly. Sensors, 17(12), 2864. CrossRef
10.
go back to reference Asif, U., Mashford, B., Von Cavallar, S., Yohanandan, S., Roy, S., Tang, J., & Harrer, S. (2020). Privacy preserving human fall detection using video data. In  Machine Learning for Health Workshop (pp. 39–51). PMLR. Asif, U., Mashford, B., Von Cavallar, S., Yohanandan, S., Roy, S., Tang, J., & Harrer, S. (2020). Privacy preserving human fall detection using video data. In  Machine Learning for Health Workshop (pp. 39–51). PMLR.
11.
go back to reference Taufeeque, M., Koita, S., Spicher, N., & Deserno, T. M. (2021). Multi-camera, multi-person, and real-time fall detection using long short term memory. In  Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications (Vol. 11601, p. 1160109). International Society for Optics and Photonics. Taufeeque, M., Koita, S., Spicher, N., & Deserno, T. M. (2021). Multi-camera, multi-person, and real-time fall detection using long short term memory. In  Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications (Vol. 11601, p. 1160109). International Society for Optics and Photonics.
12.
go back to reference Shu, F., & Shu, J. (2021). An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box. Scientific reports, 11(1), 1–17. CrossRef Shu, F., & Shu, J. (2021). An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box. Scientific reports, 11(1), 1–17. CrossRef
13.
go back to reference World Health Organization, World Health Organization. Ageing, & Life Course Unit. (2008). WHO global report on falls prevention in older age. World Health Organization. World Health Organization, World Health Organization. Ageing, & Life Course Unit. (2008). WHO global report on falls prevention in older age. World Health Organization.
14.
go back to reference Bloom, D. E., Boersch-Supan, A., McGee, P., & Seike, A. (2011). Population aging: Facts, challenges, and responses. Benefits and compensation International, 41(1), 22. Bloom, D. E., Boersch-Supan, A., McGee, P., & Seike, A. (2011). Population aging: Facts, challenges, and responses. Benefits and compensation International, 41(1), 22.
15.
go back to reference Burns, E., & Kakara, R. (2018). Deaths from falls among persons aged≥ 65 years—United States, 2007–2016. Morbidity and Mortality Weekly Report, 67(18), 509. CrossRef Burns, E., & Kakara, R. (2018). Deaths from falls among persons aged≥ 65 years—United States, 2007–2016. Morbidity and Mortality Weekly Report, 67(18), 509. CrossRef
16.
go back to reference Xu, J. (2017). Age-adjusted death rates from unintentional falls among adults aged>= 65 Years, by Sex-National Vital Statistics System, United States, 2000–2015. Xu, J. (2017). Age-adjusted death rates from unintentional falls among adults aged>= 65 Years, by Sex-National Vital Statistics System, United States, 2000–2015.
18.
go back to reference Deshpande, N., Metter, E. J., Lauretani, F., Bandinelli, S., Guralnik, J., & Ferrucci, L. (2008). Activity restriction induced by fear of falling and objective and subjective measures of physical function: A prospective cohort study. Journal of the American Geriatrics Society, 56(4), 615–620. CrossRef Deshpande, N., Metter, E. J., Lauretani, F., Bandinelli, S., Guralnik, J., & Ferrucci, L. (2008). Activity restriction induced by fear of falling and objective and subjective measures of physical function: A prospective cohort study. Journal of the American Geriatrics Society, 56(4), 615–620. CrossRef
19.
go back to reference Dionyssiotis, Y. (2012). Analyzing the problem of falls among older people. International Journal of General Medicine, 5, 805. CrossRef Dionyssiotis, Y. (2012). Analyzing the problem of falls among older people. International Journal of General Medicine, 5, 805. CrossRef
20.
go back to reference Ordonez, F. J., Englebienne, G., De Toledo, P., Van Kasteren, T., Sanchis, A., & Kröse, B. (2014). In-home activity recognition: Bayesian inference for hidden Markov models. IEEE Pervasive Computing, 13(3), 67–75. CrossRef Ordonez, F. J., Englebienne, G., De Toledo, P., Van Kasteren, T., Sanchis, A., & Kröse, B. (2014). In-home activity recognition: Bayesian inference for hidden Markov models. IEEE Pervasive Computing, 13(3), 67–75. CrossRef
21.
go back to reference Hussain, F., Umair, M. B., Ehatisham-ul-Haq, M., Pires, I. M., Valente, T., Garcia, N. M., & Pombo, N. (2019). An Efficient Machine Learning-based Elderly Fall Detection Algorithm. arXiv preprint arXiv:1911.11976. Hussain, F., Umair, M. B., Ehatisham-ul-Haq, M., Pires, I. M., Valente, T., Garcia, N. M., & Pombo, N. (2019). An Efficient Machine Learning-based Elderly Fall Detection Algorithm. arXiv preprint arXiv:1911.11976.
22.
go back to reference Anderson, D., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M., & Aud, M. (2009). Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Computer Vision and Image Understanding, 113(1), 80–89. CrossRef Anderson, D., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M., & Aud, M. (2009). Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Computer Vision and Image Understanding, 113(1), 80–89. CrossRef
23.
go back to reference Medrano, C., Igual, R., García-Magariño, I., Plaza, I., & Azuara, G. (2017). Combining novelty detectors to improve accelerometer-based fall detection. Medical & Biological Engineering & Computing, 55(10), 1849–1858. CrossRef Medrano, C., Igual, R., García-Magariño, I., Plaza, I., & Azuara, G. (2017). Combining novelty detectors to improve accelerometer-based fall detection. Medical & Biological Engineering & Computing, 55(10), 1849–1858. CrossRef
24.
go back to reference Šeketa, G., Vugrin, J., & Lacković, I. (2017). Optimal threshold selection for acceleration-based fall detection. In  International Conference on Biomedical and Health Informatics (pp. 151–155). Springer. Šeketa, G., Vugrin, J., & Lacković, I. (2017). Optimal threshold selection for acceleration-based fall detection. In  International Conference on Biomedical and Health Informatics (pp. 151–155). Springer.
25.
go back to reference Cao, H., Wu, S., Zhou, Z., Lin, C. C., Yang, C. Y., Lee, S. T., & Wu, C. T. (2016). A fall detection method based on acceleration data and hidden Markov model. In  2016 IEEE International Conference on Signal and Image Processing (ICSIP) (pp. 684–689). IEEE.. Cao, H., Wu, S., Zhou, Z., Lin, C. C., Yang, C. Y., Lee, S. T., & Wu, C. T. (2016). A fall detection method based on acceleration data and hidden Markov model. In  2016 IEEE International Conference on Signal and Image Processing (ICSIP) (pp. 684–689). IEEE..
26.
go back to reference Debard, G., Mertens, M., Deschodt, M., Vlaeyen, E., Devriendt, E., Dejaeger, E., Milisen, K., Tournoy, J., Croonenborghs, T., Goedemé, T., & Tuytelaars, T. (2016). Camera-based fall detection using real-world versus simulated data: How far are we from the solution? Journal of Ambient Intelligence and Smart Environments, 8(2), 149–168. CrossRef Debard, G., Mertens, M., Deschodt, M., Vlaeyen, E., Devriendt, E., Dejaeger, E., Milisen, K., Tournoy, J., Croonenborghs, T., Goedemé, T., & Tuytelaars, T. (2016). Camera-based fall detection using real-world versus simulated data: How far are we from the solution? Journal of Ambient Intelligence and Smart Environments, 8(2), 149–168. CrossRef
27.
go back to reference Yazar, A., Erden, F., & Cetin, A. E. (2014). Multi-sensor ambient assisted living system for fall detection. In  Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP’14) (pp. 1–3). Yazar, A., Erden, F., & Cetin, A. E. (2014). Multi-sensor ambient assisted living system for fall detection. In  Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP’14) (pp. 1–3).
28.
go back to reference Howcroft, J., Kofman, J., & Lemaire, E. D. (2017). Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812–1820. CrossRef Howcroft, J., Kofman, J., & Lemaire, E. D. (2017). Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812–1820. CrossRef
29.
go back to reference Wang, Y., Wu, K., & Ni, L. M. (2016). Wifall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 16(2), 581–594. CrossRef Wang, Y., Wu, K., & Ni, L. M. (2016). Wifall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 16(2), 581–594. CrossRef
30.
go back to reference Ozdemir, A. T., Tunc, C., & Hariri, S. (2017, September). Autonomic fall detection system. In  2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W) (pp. 166–170). IEEE. Ozdemir, A. T., Tunc, C., & Hariri, S. (2017, September). Autonomic fall detection system. In  2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W) (pp. 166–170). IEEE.
31.
go back to reference Aicha, A. N., Englebienne, G., & Kröse, B. (2018). Continuous measuring of the indoor walking speed of older adults living alone. Journal of Ambient Intelligence and Humanized Computing, 9(3), 589–599. CrossRef Aicha, A. N., Englebienne, G., & Kröse, B. (2018). Continuous measuring of the indoor walking speed of older adults living alone. Journal of Ambient Intelligence and Humanized Computing, 9(3), 589–599. CrossRef
32.
go back to reference Jain, A., & Kanhangad, V. (2018). ‘Human activity classification in smartphones using accelerometer and gyroscope sensors.’ IEEE Sensors J., 18(3), 1169–1177. CrossRef Jain, A., & Kanhangad, V. (2018). ‘Human activity classification in smartphones using accelerometer and gyroscope sensors.’ IEEE Sensors J., 18(3), 1169–1177. CrossRef
33.
go back to reference Jalloul, N., Poree, F., Viardot, G., L’Hostis, P., & Carrault, G. (2018). ‘Activity recognition using complex network analysis.’ IEEE J Biomed Health Informat, 22(4), 989–1000. CrossRef Jalloul, N., Poree, F., Viardot, G., L’Hostis, P., & Carrault, G. (2018). ‘Activity recognition using complex network analysis.’ IEEE J Biomed Health Informat, 22(4), 989–1000. CrossRef
34.
go back to reference Guvensan, M. A., Kansiz, A. O., Camgoz, N. C., Turkmen, H., Yavuz, A. G., & Karsligil, M. E. (2017). An energy-efficient multi-tier architecture for fall detection on smartphones. Sensors, 17(7), 1487. CrossRef Guvensan, M. A., Kansiz, A. O., Camgoz, N. C., Turkmen, H., Yavuz, A. G., & Karsligil, M. E. (2017). An energy-efficient multi-tier architecture for fall detection on smartphones. Sensors, 17(7), 1487. CrossRef
35.
go back to reference Yang, X., Dinh, A., & Chen, L. (2010). A wearable real-time fall detector based on Naive Bayes classifier. In  CCECE 2010 (pp. 1–4). IEEE. Yang, X., Dinh, A., & Chen, L. (2010). A wearable real-time fall detector based on Naive Bayes classifier. In  CCECE 2010 (pp. 1–4). IEEE.
36.
go back to reference Kalsum, T., Mehmood, Z., Kulsoom, F., Chaudhry, H. N., Khan, A. R., Rashid, M., & Saba, T. (2021). Localization and classification of human facial emotions using local intensity order pattern and shape-based texture features. Journal of Intelligent & Fuzzy Systems, 40, 9311–9331. CrossRef Kalsum, T., Mehmood, Z., Kulsoom, F., Chaudhry, H. N., Khan, A. R., Rashid, M., & Saba, T. (2021). Localization and classification of human facial emotions using local intensity order pattern and shape-based texture features. Journal of Intelligent & Fuzzy Systems, 40, 9311–9331. CrossRef
37.
go back to reference Chaudhry, H. N., Javed, Y., Kulsoom, F., Mehmood, Z., Khan, Z. I., Shoaib, U., & Janjua, S. H. (2021). Sentiment analysis of before and after elections: Twitter data of US election 2020. Electronics, 10(17), 2082. CrossRef Chaudhry, H. N., Javed, Y., Kulsoom, F., Mehmood, Z., Khan, Z. I., Shoaib, U., & Janjua, S. H. (2021). Sentiment analysis of before and after elections: Twitter data of US election 2020. Electronics, 10(17), 2082. CrossRef
38.
go back to reference Amer, M. R., & Todorovic, S. (2015). Sum product networks for activity recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 800–813. CrossRef Amer, M. R., & Todorovic, S. (2015). Sum product networks for activity recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 800–813. CrossRef
39.
go back to reference Agarwal, P., & Alam, M. (2020). A lightweight deep learning model for human activity recognition on edge devices. Procedia Computer Science, 167, 2364–2373. CrossRef Agarwal, P., & Alam, M. (2020). A lightweight deep learning model for human activity recognition on edge devices. Procedia Computer Science, 167, 2364–2373. CrossRef
40.
go back to reference Silva, J., Sousa, I., & Cardoso, J. (2018, July). Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls. In  2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3509–3512). IEEE. Silva, J., Sousa, I., & Cardoso, J. (2018, July). Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls. In  2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3509–3512). IEEE.
41.
go back to reference Chouhan, K., Kumar, A., Chakraverti, A. K., & Cholla, R. R. (2022). Human fall detection analysis with image recognition using convolutional neural network approach. In  Proceedings of Trends in Electronics and Health Informatics (pp. 95–106). Springer. Chouhan, K., Kumar, A., Chakraverti, A. K., & Cholla, R. R. (2022). Human fall detection analysis with image recognition using convolutional neural network approach. In  Proceedings of Trends in Electronics and Health Informatics (pp. 95–106). Springer.
42.
go back to reference Paul Ijjina, E. (2022). Human Fall Detection in Depth-Videos Using Temporal Templates and Convolutional Neural Networks. In: Tsihrintzis, G.A., Virvou, M., Esposito, A., Jain, L.C. (eds) Advances in Assistive Technologies Learning and Analytics in Intelligent Systems, vol 28. Springer. Paul Ijjina, E. (2022). Human Fall Detection in Depth-Videos Using Temporal Templates and Convolutional Neural Networks. In: Tsihrintzis, G.A., Virvou, M., Esposito, A., Jain, L.C. (eds) Advances in Assistive Technologies Learning and Analytics in Intelligent Systems, vol 28. Springer.
43.
go back to reference Muralidharan, V., & Vijayalakshmi, V. (2022). A real-time approach of fall detection and rehabilitation in elders using kinect xbox 360 and supervised machine learning algorithm. In S. Smys, V. E. Balas, & R. Palanisamy (Eds.), Inventive computation and information technologies lecture notes in networks and systems. (Vol. 336). Springer. Muralidharan, V., & Vijayalakshmi, V. (2022). A real-time approach of fall detection and rehabilitation in elders using kinect xbox 360 and supervised machine learning algorithm. In S. Smys, V. E. Balas, & R. Palanisamy (Eds.), Inventive computation and information technologies lecture notes in networks and systems. (Vol. 336). Springer.
44.
go back to reference Graves, A., Mohamed, A., and Geoffrey Hinton, H. (2013). Speech recognition with deep recurrent neural networks." In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649. Graves, A., Mohamed, A., and Geoffrey Hinton, H. (2013). Speech recognition with deep recurrent neural networks." In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649.
45.
go back to reference Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3, 115–143. MathSciNetMATH Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3, 115–143. MathSciNetMATH
46.
go back to reference Gorji, A., Bourdoux, A., Pollin, S., & Sahli, H. (2022). Multi-view CNN-LSTM architecture for radar-based human activity recognition. IEEE Access, 10, 24509–24519. CrossRef Gorji, A., Bourdoux, A., Pollin, S., & Sahli, H. (2022). Multi-view CNN-LSTM architecture for radar-based human activity recognition. IEEE Access, 10, 24509–24519. CrossRef
47.
go back to reference Andrade-Ambriz, Y. A., Ledesma, S., Ibarra-Manzano, M. A., Oros-Flores, M. I., & Almanza-Ojeda, D. L. (2022). Human activity recognition using temporal convolutional neural network architecture. Expert Systems with Applications, 191, 116287. CrossRef Andrade-Ambriz, Y. A., Ledesma, S., Ibarra-Manzano, M. A., Oros-Flores, M. I., & Almanza-Ojeda, D. L. (2022). Human activity recognition using temporal convolutional neural network architecture. Expert Systems with Applications, 191, 116287. CrossRef
48.
go back to reference Banjarey, K., Sahu, S. P., & Dewangan, D. K. (2022). Human Activity Recognition Using 1D Convolutional Neural Network. In  Sentimental Analysis and Deep Learning (pp. 691–702). Springer. Banjarey, K., Sahu, S. P., & Dewangan, D. K. (2022). Human Activity Recognition Using 1D Convolutional Neural Network. In  Sentimental Analysis and Deep Learning (pp. 691–702). Springer.
49.
go back to reference Simonyan, K., Zisserman, A. (2015 ). Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, arXiv:​1409.​1556 Simonyan, K., Zisserman, A. (2015 ). Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, arXiv:​1409.​1556
Metadata
Title
Fall Detection Using LSTM and Transfer Learning
Authors
Ayesha Butt
Sanam Narejo
Muhammad Rizwan Anjum
Muhammad Usman Yonus
Mashal Memon
Arbab Ali Samejo
Publication date
22-06-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09819-3

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue