Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

04-03-2024

Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 1. The model, Its Basic Properties, Integral Curves, and Phase Portraits

Authors: A. V. Khokhlov, V. V. Gulin

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A systematic analytical study of the mathematical properties of the previously constructed nonlinear model of the shear flow of thixotropic viscoelastic-plastic media, which takes into account the mutual influence of the deformation process and structure evolution, is carried out. A set of two nonlinear differential equations describing shear at a constant rate and stress relaxation was obtained. Assuming six material parameters and an (increasing) material function that control the model are arbitrary, the basic properties of the families of stress-strain curves at constant strain rates, stress relaxation curves (Part 2) and creep curves (Part 3) generated by the model, and the features of the evolution of the structuredness under these types of loading were analytically studied. The dependences of these curves on time, shear rate, stress level, initial strain and initial structuredness of material (for example, degree of physical crosslinking), as well as on material parameters and function governing the model, were studied. Several indicators of the model applicability are found, which are convenient to check with experimental data. It was examined what effects typical for viscoelastic-plastic media can be described by the model and what unusual effects (properties) are generated by structuredness changes in comparison to typical stress-strain, relaxation and creep curves of structurally stable materials. The analysis proved the ability of the model to describe behavior of not only liquid-like viscoelastoplastic media, but also solid-like (thickening, hardening, hardened) media: the effects of creep, relaxation, recovery, a number of typical properties of experimental relaxation curves, creep and stress-strain curves at a constant rate, strain rate and strain hardening, flow under constant stress, etc. The first part of the article is devoted to formulation of the model and preparation of basis for the second part: the proof of the uniqueness and stability of the equilibrium point of the nonlinear equations set, analytical study of the equilibrium point dependence on all material parameters, possible types of phase portraits and the properties of integral and phase curves of the model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. Roy. Soc. Lond. for the year 1867, 1868. Vol. CLVII. P. 49-88. J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. Roy. Soc. Lond. for the year 1867, 1868. Vol. CLVII. P. 49-88.
2.
go back to reference E. C. Bingham, Fluidity and Plasticity. McGraw-Hill, N. Y. (1922). E. C. Bingham, Fluidity and Plasticity. McGraw-Hill, N. Y. (1922).
3.
go back to reference J. G. Oldroyd, “Non Newtonian effects in steady motion of some idealised elastico-viscous liquids,” Proc. Roy. Soc. London. Ser. A., 245, 278-297 (1958).ADSMathSciNetCrossRef J. G. Oldroyd, “Non Newtonian effects in steady motion of some idealised elastico-viscous liquids,” Proc. Roy. Soc. London. Ser. A., 245, 278-297 (1958).ADSMathSciNetCrossRef
4.
go back to reference M. Reiner, Rheology, in: Encyclopedia of Physics, Vol. 6, SpringerBerlin-Heidelberg (1958), 434-550. M. Reiner, Rheology, in: Encyclopedia of Physics, Vol. 6, SpringerBerlin-Heidelberg (1958), 434-550.
5.
go back to reference P. A. Rebinder, Surface Phenomena in Dispersed Systems. Colloid Chemistry. Nauka, Moscow (1978). P. A. Rebinder, Surface Phenomena in Dispersed Systems. Colloid Chemistry. Nauka, Moscow (1978).
6.
go back to reference B. D. Coleman, A. Makrovitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment, Springer, Berlin-Heidelberg-New York (1966). B. D. Coleman, A. Makrovitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment, Springer, Berlin-Heidelberg-New York (1966).
7.
go back to reference J. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad, (1975). J. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad, (1975).
8.
go back to reference G. V. Vinogradov and A. Ya. Malkin, Polymer Rheology, [in Russian], Khimiya Publ., Moscow (1977). G. V. Vinogradov and A. Ya. Malkin, Polymer Rheology, [in Russian], Khimiya Publ., Moscow (1977).
9.
go back to reference E. E. Bibik, Rheology of Disperse Systems [in Russian], LGU, Leningrad (1981). E. E. Bibik, Rheology of Disperse Systems [in Russian], LGU, Leningrad (1981).
10.
go back to reference G. M. Bartenev and Iu. V. Zelenev, Physics and Mechanics of Polymers [in Russian], Vysshaia Shkola Publ., Moscow (1983). G. M. Bartenev and Iu. V. Zelenev, Physics and Mechanics of Polymers [in Russian], Vysshaia Shkola Publ., Moscow (1983).
11.
go back to reference R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988). R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988).
12.
go back to reference N. B. Ur’ev, Physicochemical Fundamentals of Disperse Systems and Materials [in Russian], Khimiya, Moscow (1988). N. B. Ur’ev, Physicochemical Fundamentals of Disperse Systems and Materials [in Russian], Khimiya, Moscow (1988).
13.
go back to reference A. I. Leonov and A. N. Prokunin, Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London (1994).CrossRef A. I. Leonov and A. N. Prokunin, Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London (1994).CrossRef
14.
go back to reference C. Macosko, Rheology: Principles, Measurements and Applications, VCH, N.Y. (1994). C. Macosko, Rheology: Principles, Measurements and Applications, VCH, N.Y. (1994).
15.
go back to reference G. Schramm, A Practical Approach to Rheology and Rheometry, Gebrueder Haake GmbH, Karlsruhe (1994). G. Schramm, A Practical Approach to Rheology and Rheometry, Gebrueder Haake GmbH, Karlsruhe (1994).
16.
go back to reference C. L. Rohn, Analytical Polymer Rheology, Hanser Publishers, Munich (1995). C. L. Rohn, Analytical Polymer Rheology, Hanser Publishers, Munich (1995).
17.
go back to reference R. R. Huilgol, and N. Phan-Thien, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam (1997). R. R. Huilgol, and N. Phan-Thien, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam (1997).
18.
go back to reference R. G. Larson, Structure and Rheology of Complex Fluids, Oxford Press, New York (1999). R. G. Larson, Structure and Rheology of Complex Fluids, Oxford Press, New York (1999).
19.
go back to reference R. K. Gupta, Polymer and Composite Rheology. Marcel Dekker, N. Y. (2000). R. K. Gupta, Polymer and Composite Rheology. Marcel Dekker, N. Y. (2000).
20.
go back to reference R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford (2000).CrossRef R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford (2000).CrossRef
21.
go back to reference H. Yamaguchi, Engineering Fluid Mechanics (Fluid Mechanics and Its Applications). Springer, (2008). H. Yamaguchi, Engineering Fluid Mechanics (Fluid Mechanics and Its Applications). Springer, (2008).
22.
go back to reference C. D. Han, Rheology and Processing of Polymeric Material, Vols. 1-2, Oxford University Press, Oxford (2007). C. D. Han, Rheology and Processing of Polymeric Material, Vols. 1-2, Oxford University Press, Oxford (2007).
23.
go back to reference W. W. Graessley, Polymeric Liquids and Networks: Dynamics and Rheology, Garland Science, London (2008). W. W. Graessley, Polymeric Liquids and Networks: Dynamics and Rheology, Garland Science, London (2008).
24.
go back to reference M. M. Denn, Polymer Melt Processing. Cambridge University Press, Cambridge (2008).CrossRef M. M. Denn, Polymer Melt Processing. Cambridge University Press, Cambridge (2008).CrossRef
25.
go back to reference M. Kamal, A. Isayef, and S. Liu, Injection Molding Fundamentals and Applications. Hanser, Munich (2009).CrossRef M. Kamal, A. Isayef, and S. Liu, Injection Molding Fundamentals and Applications. Hanser, Munich (2009).CrossRef
26.
go back to reference J. L. Leblanc, Filled Polymers, CRC Press, Boca Raton (2010). J. L. Leblanc, Filled Polymers, CRC Press, Boca Raton (2010).
27.
go back to reference A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.). ChemTec Publishing, Toronto (2012). A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.). ChemTec Publishing, Toronto (2012).
28.
go back to reference V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer (2010). V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer (2010).
29.
go back to reference F. A. Garifullin, Macromolecules and Rheological Equations, Part 1 and 2 [in Russian], KGTU Publ., Kazan (2008). F. A. Garifullin, Macromolecules and Rheological Equations, Part 1 and 2 [in Russian], KGTU Publ., Kazan (2008).
30.
go back to reference A. Iu. Altukhov, A. S. Gusev, G. V. Pyshnograi, and K. B. Koshelev, Introduction to the Mesoscopic Theory of Fluid Polymer Systems [in Russian], AltGPA Publ., Barnaul (2012). A. Iu. Altukhov, A. S. Gusev, G. V. Pyshnograi, and K. B. Koshelev, Introduction to the Mesoscopic Theory of Fluid Polymer Systems [in Russian], AltGPA Publ., Barnaul (2012).
31.
go back to reference A. M. Stolin, A. Y. Malkin, and A. G. Merzhanov, “Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers,” Russian Chemical Reviews, 48, No. 8, 798-811 (1979).ADSCrossRef A. M. Stolin, A. Y. Malkin, and A. G. Merzhanov, “Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers,” Russian Chemical Reviews, 48, No. 8, 798-811 (1979).ADSCrossRef
33.
go back to reference A. I. Leonov, “Constitutive equations for viscoelasticliquids: formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef A. I. Leonov, “Constitutive equations for viscoelasticliquids: formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef
34.
go back to reference J. J. Stickel and R. L. Powell, “Fluid mechanics and rheology of dense suspensions,” Annual Review of Fluid Mech., 37, 129-149 (2005).ADSMathSciNetCrossRef J. J. Stickel and R. L. Powell, “Fluid mechanics and rheology of dense suspensions,” Annual Review of Fluid Mech., 37, 129-149 (2005).ADSMathSciNetCrossRef
35.
go back to reference S. Mueller, E. W. Llewellin, and H. M. Mader, “The rheology of suspensions of solid particles,” Proc. R. Soc. A, 466, No. 2116, 1201-1228 (2010).ADSCrossRef S. Mueller, E. W. Llewellin, and H. M. Mader, “The rheology of suspensions of solid particles,” Proc. R. Soc. A, 466, No. 2116, 1201-1228 (2010).ADSCrossRef
36.
go back to reference A. Ya. Malkin and S. A. Patlazhan, “Wall slip for complex liquids — Phenomenon and its causes,” Advances in Colloid and Interface Sci., 257, 42-57 (2018).CrossRef A. Ya. Malkin and S. A. Patlazhan, “Wall slip for complex liquids — Phenomenon and its causes,” Advances in Colloid and Interface Sci., 257, 42-57 (2018).CrossRef
37.
go back to reference A. M. Stolin, S. I. Khudyaev, and L. M. Buchatskii, “Theory of viscosity superanomaly of structured systems,” Dokl. Akad. Nauk SSSR, 243, 430-433 (1978). A. M. Stolin, S. I. Khudyaev, and L. M. Buchatskii, “Theory of viscosity superanomaly of structured systems,” Dokl. Akad. Nauk SSSR, 243, 430-433 (1978).
38.
go back to reference A. M. Stolin and V. I. Irzhak, “Structurally nonuniform flow regimes in the process of polymer fiber formation,” Polym. Sci., 35, No. 7, 990-992 (1993). A. M. Stolin and V. I. Irzhak, “Structurally nonuniform flow regimes in the process of polymer fiber formation,” Polym. Sci., 35, No. 7, 990-992 (1993).
39.
go back to reference N. A. Belyaeva, A. M. Stolin, and L. S. Stelmah, “Modes of firmly-phase extrusion of viscoelastic structured systems,” Inzh. Fiz., No. 1, 10-16 (2009). N. A. Belyaeva, A. M. Stolin, and L. S. Stelmah, “Modes of firmly-phase extrusion of viscoelastic structured systems,” Inzh. Fiz., No. 1, 10-16 (2009).
40.
go back to reference Yu. L. Kuznetsova and O. I. Skul’skiy, “Effect of different flows on the shear banding of a liquid with a non-monotonic flow curve,” Appl Mech Tech Phy., 60, No. 1, 22-30 (2019). Yu. L. Kuznetsova and O. I. Skul’skiy, “Effect of different flows on the shear banding of a liquid with a non-monotonic flow curve,” Appl Mech Tech Phy., 60, No. 1, 22-30 (2019).
41.
go back to reference T. Divoux, M. A. Fardin, S. Manneville, and S. Lerouge, “Shear banding of complex fluids,” Annual Review of Fluid Mech., 48, 81-103 (2016).ADSMathSciNetCrossRef T. Divoux, M. A. Fardin, S. Manneville, and S. Lerouge, “Shear banding of complex fluids,” Annual Review of Fluid Mech., 48, 81-103 (2016).ADSMathSciNetCrossRef
42.
go back to reference J. F. Brady and J. F. Morris, “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,” J. Fluid Mech., 348, 103-139 (1997).ADSCrossRef J. F. Brady and J. F. Morris, “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,” J. Fluid Mech., 348, 103-139 (1997).ADSCrossRef
43.
44.
go back to reference A. Y. Malkin and V. G. Kulichikhin, “Structure and rheology of highly concentrated emulsions: a modern look,” Russian Chemical Reviews, 84, No. 8, 803-825 (2015).ADSCrossRef A. Y. Malkin and V. G. Kulichikhin, “Structure and rheology of highly concentrated emulsions: a modern look,” Russian Chemical Reviews, 84, No. 8, 803-825 (2015).ADSCrossRef
47.
go back to reference K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Heidelberg: Springer-Verlag, Berlin (2001).CrossRef K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Heidelberg: Springer-Verlag, Berlin (2001).CrossRef
48.
go back to reference D. Fraggedakis, Y. Dimakopoulos, and J. Tsamopoulos, “Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models,” J. Non-Newtonian Fluid Mech., 236, 104-122 (2016).MathSciNetCrossRef D. Fraggedakis, Y. Dimakopoulos, and J. Tsamopoulos, “Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models,” J. Non-Newtonian Fluid Mech., 236, 104-122 (2016).MathSciNetCrossRef
49.
go back to reference M. E. Eglit, A. E. Yakubenko, and J. S. Zayko, “Mathematical modeling of slope flows of non-newtonian media,” Proc. Steklov Inst. Math., 300, 219-229 (2018).CrossRef M. E. Eglit, A. E. Yakubenko, and J. S. Zayko, “Mathematical modeling of slope flows of non-newtonian media,” Proc. Steklov Inst. Math., 300, 219-229 (2018).CrossRef
50.
go back to reference S. Varchanis, G. Makrigiorgos, P. Moschopoulos, Y. Dimakopoulos, and J. Tsamopoulos, “Modeling the rheology of thixotropic elasto-visco-plastic materials,” J. Rheology, 63, 4, 609-639 (2019).ADSCrossRef S. Varchanis, G. Makrigiorgos, P. Moschopoulos, Y. Dimakopoulos, and J. Tsamopoulos, “Modeling the rheology of thixotropic elasto-visco-plastic materials,” J. Rheology, 63, 4, 609-639 (2019).ADSCrossRef
51.
go back to reference A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., No. 3, 524-543 [in Russian] (2016). doi: https://doi.org/10.14498/vsgtu1512 A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., No. 3, 524-543 [in Russian] (2016). doi: https://​doi.​org/​10.​14498/​vsgtu1512
52.
go back to reference A. V. Khokhlov, “Nonlinear Maxwell-type elastoviscoplastic model: General properties of stress relaxation curves and restrictions on the material functions,” Vestn. Mosk. Gos. Tekh. Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., No. 6, 31-55 (2017) [In Russian]. doi: https://doi.org/10.18698/1812-3368-2017-6-31-55 A. V. Khokhlov, “Nonlinear Maxwell-type elastoviscoplastic model: General properties of stress relaxation curves and restrictions on the material functions,” Vestn. Mosk. Gos. Tekh. Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., No. 6, 31-55 (2017) [In Russian]. doi: https://​doi.​org/​10.​18698/​1812-3368-2017-6-31-55
53.
go back to reference A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: Simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21, No. 1, 160-179 (2017) (in Russian). doi: https://doi.org/10.14498/vsgtu1524. A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: Simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21, No. 1, 160-179 (2017) (in Russian). doi: https://​doi.​org/​10.​14498/​vsgtu1524.
Metadata
Title
Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 1. The model, Its Basic Properties, Integral Curves, and Phase Portraits
Authors
A. V. Khokhlov
V. V. Gulin
Publication date
04-03-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10174-6

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners