Skip to main content
Top

20-07-2024

Farm-Level Smart Crop Recommendation Framework Using Machine Learning

Authors: Amit Bhola, Prabhat Kumar

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 \(\text {R}^{\text {2}}\) error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10 Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10
19.
go back to reference Mariammal G, Suruliandi A, Raja S, Poongothai E (2021) Prediction of land suitability for crop cultivation based on soil and environmental characteristics using modified recursive feature elimination technique with various classifiers. IEEE Trans Comput Soc Syst 8(5):1132–1142. https://doi.org/10.1109/TCSS.2021.3074534CrossRef Mariammal G, Suruliandi A, Raja S, Poongothai E (2021) Prediction of land suitability for crop cultivation based on soil and environmental characteristics using modified recursive feature elimination technique with various classifiers. IEEE Trans Comput Soc Syst 8(5):1132–1142. https://​doi.​org/​10.​1109/​TCSS.​2021.​3074534CrossRef
28.
go back to reference Shingade SD, Mudhalwadkar RP (2023) Sensor information-based crop recommendation system using machine learning for the fertile regions of Maharashtra. Concurr Comput Pract Exp 35:7774CrossRef Shingade SD, Mudhalwadkar RP (2023) Sensor information-based crop recommendation system using machine learning for the fertile regions of Maharashtra. Concurr Comput Pract Exp 35:7774CrossRef
37.
go back to reference Ajoodha R, Mufamadi TO (2023) Crop recommendation using machine learning algorithms and soil attributes data. In: Proceedings of 3rd international conference on artificial intelligence: advances and applications: ICAIAA 2022, pp 31–41 Ajoodha R, Mufamadi TO (2023) Crop recommendation using machine learning algorithms and soil attributes data. In: Proceedings of 3rd international conference on artificial intelligence: advances and applications: ICAIAA 2022, pp 31–41
Metadata
Title
Farm-Level Smart Crop Recommendation Framework Using Machine Learning
Authors
Amit Bhola
Prabhat Kumar
Publication date
20-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00534-3

Premium Partner