Skip to main content
Top
Published in:

01-12-2022

Fast and General Incomplete Multi-view Adaptive Clustering

Authors: Xia Ji, Lei Yang, Sheng Yao, Peng Zhao, Xuejun Li

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of data collection technologies, multi-view clustering (MVC) has become an emerging research topic. The traditional MVC method cannot process incomplete views. In recent years, although many incomplete multi-view clustering methods have been proposed by many researchers, these methods still suffer from some limitations. For example, these methods all have parameters that need to be adjusted, or have high computational complexity and are not suitable for processing large-scale data. To make matters worse, these methods are not suitable for cases where there are no paired samples among multiple views. The above limitations make existing methods difficult to apply in practice. This paper proposes a Fast and General Incomplete Multi-view Adaptive Clustering (FGPMAC) method. The FGPMAC adopts an adaptive neighbor assignment strategy to independently construct the similarity matrix of each view, thereby it can handle the cases where there are no paired samples among multiple views, and eliminating the necessary to adjust the parameters. Moreover, by adopting a non-iterative approach, FGPMAC has low computational complexity and is suitable for large-scale datasets. Results of experiments on multiple real datasets fully demonstrate the advantages of FGPMAC, such as simplicity, effectiveness and superiority.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Song B, Zhou Z, Wang J, Xiang B, Qi T. Ensemble Diffusion for Retrieval. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. Song B, Zhou Z, Wang J, Xiang B, Qi T. Ensemble Diffusion for Retrieval. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.
2.
go back to reference Zhang Z, Xie Y, Zhang W, Tian Q. Effective Image Retrieval via Multilinear Multi-Index Fusion. IEEE Trans Multimedia. 2019;21(11):2878–90.CrossRef Zhang Z, Xie Y, Zhang W, Tian Q. Effective Image Retrieval via Multilinear Multi-Index Fusion. IEEE Trans Multimedia. 2019;21(11):2878–90.CrossRef
3.
go back to reference Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval. 2003;267–273. Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval. 2003;267–273.
4.
go back to reference Yin M, Gao J, Xie S, Guo Y. Multiview subspace clustering via tensorial t-product representation. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(3):851–64.MathSciNetCrossRef Yin M, Gao J, Xie S, Guo Y. Multiview subspace clustering via tensorial t-product representation. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(3):851–64.MathSciNetCrossRef
5.
go back to reference Salvador J, Casas JR. Multi-view video representation based on fast monte carlo surface reconstruction. IEEE Trans Image Process. 2013;22(9):3342–52.MathSciNetCrossRefMATH Salvador J, Casas JR. Multi-view video representation based on fast monte carlo surface reconstruction. IEEE Trans Image Process. 2013;22(9):3342–52.MathSciNetCrossRefMATH
6.
go back to reference Tan TY, Zhang L, Lim CP. Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks. Knowledge-Based Systems. 2020;187:104807.1–104807.26. Tan TY, Zhang L, Lim CP. Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks. Knowledge-Based Systems. 2020;187:104807.1–104807.26.
7.
go back to reference Sato Y, Izui K, Yamada T, Nishiwaki S. Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization. Expert Syst Appl. 2019;119:247–61.CrossRef Sato Y, Izui K, Yamada T, Nishiwaki S. Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization. Expert Syst Appl. 2019;119:247–61.CrossRef
8.
go back to reference Zhu X, Zhang S, He W, Hu R, Lei C, Zhu P. One-Step Multi-View Spectral Clustering. IEEE Trans Knowl Data Eng. 2019;31(10):2022–34.CrossRef Zhu X, Zhang S, He W, Hu R, Lei C, Zhu P. One-Step Multi-View Spectral Clustering. IEEE Trans Knowl Data Eng. 2019;31(10):2022–34.CrossRef
9.
go back to reference Li SY, Jiang Y, Zhou ZH. Partial multi-view clustering. In: Proceedings of the AAAI conference on artificial intelligence. 2014;1968–1974. Li SY, Jiang Y, Zhou ZH. Partial multi-view clustering. In: Proceedings of the AAAI conference on artificial intelligence. 2014;1968–1974.
10.
go back to reference Wang Q, Si L, Shen B. Learning to hash on partial multi-modal data. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2015;3904–3910. Wang Q, Si L, Shen B. Learning to hash on partial multi-modal data. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2015;3904–3910.
11.
go back to reference Zhao H, Liu H, Fu Y. Incomplete multi-modal visual data grouping. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2016;2392–2398. Zhao H, Liu H, Fu Y. Incomplete multi-modal visual data grouping. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2016;2392–2398.
12.
go back to reference Guo J, Ye J. Anchors Bring Ease: An Embarrassingly Simple Approach to Partial Multi-view Clustering. In: Proceedings of the AAAI conference on artificial intelligence. 2019;118–125. Guo J, Ye J. Anchors Bring Ease: An Embarrassingly Simple Approach to Partial Multi-view Clustering. In: Proceedings of the AAAI conference on artificial intelligence. 2019;118–125.
13.
go back to reference Wen J, Xu Y, Liu H. Incomplete Multiview Spectral Clustering with Adaptive Graph Learning. IEEE Transactions on Cybernetics. 2020;50(4):1418–29.CrossRef Wen J, Xu Y, Liu H. Incomplete Multiview Spectral Clustering with Adaptive Graph Learning. IEEE Transactions on Cybernetics. 2020;50(4):1418–29.CrossRef
14.
go back to reference Wen J, Yan K, Zhang Z, Xu Y, Zhang B. Adaptive graph completion based incomplete multi-view clustering. IEEE Trans Multimedia. 2020;99:1–1. Wen J, Yan K, Zhang Z, Xu Y, Zhang B. Adaptive graph completion based incomplete multi-view clustering. IEEE Trans Multimedia. 2020;99:1–1.
15.
go back to reference Shao W, He L, Yu P. Multiple incomplete views clustering via weighted NMF with regularization. ECML/PKDD. 2015;318–334. Shao W, He L, Yu P. Multiple incomplete views clustering via weighted NMF with regularization. ECML/PKDD. 2015;318–334.
16.
go back to reference Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factorization. SDM. 2013;252–260. Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factorization. SDM. 2013;252–260.
17.
go back to reference Trivedi A, Rai P, Daume H, DuVall SL. Multiview clustering with incomplete views. In: Advances in Neural Information Processing Systems Workshop. 2010. Trivedi A, Rai P, Daume H, DuVall SL. Multiview clustering with incomplete views. In: Advances in Neural Information Processing Systems Workshop. 2010.
18.
go back to reference Gao H, Peng Y, Jian S. Incomplete multi-view clustering. In: International Conference on Intelligent Information Processing. Springer. 2016;245–255. Gao H, Peng Y, Jian S. Incomplete multi-view clustering. In: International Conference on Intelligent Information Processing. Springer. 2016;245–255.
19.
go back to reference Ng AY, Jordan MI, Weiss Y. On Spectral Clustering: Analysis and an Algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. MIT Press. 2001. Ng AY, Jordan MI, Weiss Y. On Spectral Clustering: Analysis and an Algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. MIT Press. 2001.
20.
go back to reference Hou C, Nie F, Li X, Yi D, Yi W. Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection. IEEE Transactions on Cybernetics. 2013;44(6). Hou C, Nie F, Li X, Yi D, Yi W. Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection. IEEE Transactions on Cybernetics. 2013;44(6).
21.
go back to reference Boyd S, Vandenberghe L. Convex optimization. In Cambridge University Press. 2004. Boyd S, Vandenberghe L. Convex optimization. In Cambridge University Press. 2004.
22.
go back to reference Nie F, Wang X, Huang H. Clustering and projected clustering with adaptive neighbors. In: Proceedings of ACM SIGKDD. 2014. Nie F, Wang X, Huang H. Clustering and projected clustering with adaptive neighbors. In: Proceedings of ACM SIGKDD. 2014.
23.
go back to reference Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;31:210–27.CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;31:210–27.CrossRef
24.
go back to reference Hagen L, Kahng AB. New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Aided Des Integr Circuits Syst. 1992;11(9):1074–85.CrossRef Hagen L, Kahng AB. New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Aided Des Integr Circuits Syst. 1992;11(9):1074–85.CrossRef
25.
go back to reference Holmes M, Gray A, Isbell C. Fast svd for large-scale matrices. In NIPS workshop. 2007;28:249–52. Holmes M, Gray A, Isbell C. Fast svd for large-scale matrices. In NIPS workshop. 2007;28:249–52.
26.
go back to reference Nilsback ME, Zisserman A. A visual vocabulary for flower classification. In CVPR. 2006;1447–1454. Nilsback ME, Zisserman A. A visual vocabulary for flower classification. In CVPR. 2006;1447–1454.
27.
go back to reference Hull J. A database for handwritten text recognition research. TPAMI. 1994;16(5):550–4.CrossRef Hull J. A database for handwritten text recognition research. TPAMI. 1994;16(5):550–4.CrossRef
28.
go back to reference LeCun Y, Bottou L, Bengio Y, Haaffner P. Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. 1998;86(11):2278–2324. LeCun Y, Bottou L, Bengio Y, Haaffner P. Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. 1998;86(11):2278–2324.
29.
go back to reference Greene D, Cunningham P. A matrix factorization approach for integrating multiple data views. ECML/PKDD. 2009;423–438. Greene D, Cunningham P. A matrix factorization approach for integrating multiple data views. ECML/PKDD. 2009;423–438.
30.
go back to reference Mallah C, Cope J, Orwell J. Plant leaf classification using probabilistic integration of shape, texture and margin features. In: Proceedings of the IASTED International Conference Signal Processing, Pattern Recognition and Applications. 2013;279–286. Mallah C, Cope J, Orwell J. Plant leaf classification using probabilistic integration of shape, texture and margin features. In: Proceedings of the IASTED International Conference Signal Processing, Pattern Recognition and Applications. 2013;279–286.
31.
go back to reference Samaria FS, Harter AC. Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision. 1994;138–142. Samaria FS, Harter AC. Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision. 1994;138–142.
32.
go back to reference Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y. Nus-wide: a real-world web image database from national university of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, (CIVR). 2009;48. Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y. Nus-wide: a real-world web image database from national university of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, (CIVR). 2009;48.
33.
go back to reference Dueck D, Frey BJ. Non-metric affinity propagation for unsupervised image categorization. In: Proceedings of the IEEE International Conference on Computer Vision, IEEE. 2007;1–8. Dueck D, Frey BJ. Non-metric affinity propagation for unsupervised image categorization. In: Proceedings of the IEEE International Conference on Computer Vision, IEEE. 2007;1–8.
34.
go back to reference Peng Xi, et al. COMIC: Multi-view clustering without parameter selection. In: International conference on machine learning. PMLR. 2019;5092-5101. Peng Xi, et al. COMIC: Multi-view clustering without parameter selection. In: International conference on machine learning. PMLR. 2019;5092-5101.
Metadata
Title
Fast and General Incomplete Multi-view Adaptive Clustering
Authors
Xia Ji
Lei Yang
Sheng Yao
Peng Zhao
Xuejun Li
Publication date
01-12-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10079-3

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner