Skip to main content
Top
Published in: Machine Vision and Applications 6/2014

01-08-2014 | Original Paper

Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method

Authors: Siavash Alipour, Jamshid Shanbehzadeh

Published in: Machine Vision and Applications | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fast two-cycle (FTC) model is an efficient and the fastest Level set image segmentation. But, its performance is highly dependent on appropriate manual initialization. This paper proposes a new algorithm by combining a spatially constrained kernel-based fuzzy c-means (SKFCM) algorithm and an FTC model to overcome the mentioned problem. The approach consists of two successive stages. First, the SKFCM makes a rough segmentation to select the initial contour automatically. Then, a fuzzy membership matrix of the region of interest, which is generated by the SKFCM, is used in the next stage to produce an initial contour. Eventually, the FTC scheme segments the image by a curve evolution based on the level set. Moreover, the fuzzy membership degree from the SKFCM is incorporated into the fidelity term of the Chan–Vese model to improve the robustness and accuracy, and it is utilized for the data-dependent speed term of the FTC. A performance evaluation of the proposed algorithm is carried out on the synthetic and real images. The experimental results show that the proposed algorithm has advantages in accuracy, computational time and robustness against noise in comparison with the KFCM, the SKFCM, the hybrid model of the KFCM and the FTC, and five different level set methods on medical image segmentation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bankman, I. (ed.): Handbook of Medical Image Processing and Analysis, 2nd edn. Elsevier, Amsterdam (2009) Bankman, I. (ed.): Handbook of Medical Image Processing and Analysis, 2nd edn. Elsevier, Amsterdam (2009)
2.
go back to reference Larie, S., Abukmeil, S.: Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. J. Psych. 172, 110–120 (1998) Larie, S., Abukmeil, S.: Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. J. Psych. 172, 110–120 (1998)
3.
go back to reference Worth, A.J., Makris, N., Caviness, V.S., Kennedy, D.N.: Neuroanatomical segmentation in MRI: technological objectives. Int. J. Patt. Recognit. Artif. Intell. 11, 1161–1187 (1997)CrossRef Worth, A.J., Makris, N., Caviness, V.S., Kennedy, D.N.: Neuroanatomical segmentation in MRI: technological objectives. Int. J. Patt. Recognit. Artif. Intell. 11, 1161–1187 (1997)CrossRef
4.
go back to reference Davatzikos, C.A., Prince, J.L.: An active contour model for mapping the cortex. IEEE Trans. Med. Image 14, 65–80 (1995)CrossRef Davatzikos, C.A., Prince, J.L.: An active contour model for mapping the cortex. IEEE Trans. Med. Image 14, 65–80 (1995)CrossRef
5.
go back to reference Srinivasan, A., Sundaram, A.: Applications of deformable models for in-depth analysis and feature extraction from medical images—a review. Pattern Recognit. Image Anal. 23, 296–318 (2013)CrossRef Srinivasan, A., Sundaram, A.: Applications of deformable models for in-depth analysis and feature extraction from medical images—a review. Pattern Recognit. Image Anal. 23, 296–318 (2013)CrossRef
6.
go back to reference Dietenbeck, T., Alessandrini, M., Friboulet, D., Bernard, O.: CREASEG: a free software for the evaluation of image segmentation algorithms based on level-set. In: Image Processing (ICIP), 17th IEEE International Conference on Hong Kong, pp. 665–668 (2010) Dietenbeck, T., Alessandrini, M., Friboulet, D., Bernard, O.: CREASEG: a free software for the evaluation of image segmentation algorithms based on level-set. In: Image Processing (ICIP), 17th IEEE International Conference on Hong Kong, pp. 665–668 (2010)
7.
go back to reference Xu, C., Pham, D., Prince, J.L.: Image Segmentation Using Deformable Models. Handbook of Medical Imaging, Medical Image Processing and Analysis, vol. 2, pp. 129–174 (2000) Xu, C., Pham, D., Prince, J.L.: Image Segmentation Using Deformable Models. Handbook of Medical Imaging, Medical Image Processing and Analysis, vol. 2, pp. 129–174 (2000)
8.
go back to reference Suri, J.S., Kecheng, L., Sameer, S., Swamy, N.L., Xiaolan, Z., Reden, L.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans. Inf. Technol. Biomed. 6, 8–28 (2002)CrossRef Suri, J.S., Kecheng, L., Sameer, S., Swamy, N.L., Xiaolan, Z., Reden, L.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans. Inf. Technol. Biomed. 6, 8–28 (2002)CrossRef
9.
go back to reference Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)CrossRefMATHMathSciNet Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)CrossRefMATHMathSciNet
10.
go back to reference Rastgarpour, M., Alipour, S., Shanbehzadeh, J.: Improved fast two cycle by using KFCM clustering for image segmentation. MultiConf. Eng. Comput. Sci. 1, 678–682 (2012) Rastgarpour, M., Alipour, S., Shanbehzadeh, J.: Improved fast two cycle by using KFCM clustering for image segmentation. MultiConf. Eng. Comput. Sci. 1, 678–682 (2012)
11.
go back to reference Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Trans. Image Process. 17, 645–656 (2008)CrossRefMathSciNet Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Trans. Image Process. 17, 645–656 (2008)CrossRefMathSciNet
12.
go back to reference Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)CrossRefMATH Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)CrossRefMATH
13.
go back to reference Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATH Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATH
14.
go back to reference Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. IEEE Conf. Comput. Vis. Pattern Recognit. 1, 430–436 (2005) Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. IEEE Conf. Comput. Vis. Pattern Recognit. 1, 430–436 (2005)
15.
go back to reference Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms (1981) Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms (1981)
16.
go back to reference Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)CrossRef Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)CrossRef
17.
go back to reference Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)CrossRefMATH Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)CrossRefMATH
18.
go back to reference Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)CrossRef Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)CrossRef
19.
go back to reference Zhang, D.-Q., Chen, S.-C.: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32(1), 37–50 (2004)CrossRef Zhang, D.-Q., Chen, S.-C.: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32(1), 37–50 (2004)CrossRef
20.
go back to reference Merriman, B., Bence, J., Osher, S., Taylor, J.: Diffusion Generated Motion by Mean Curvature. Dept. of Mathematics, University of California, Los Angeles (1992) Merriman, B., Bence, J., Osher, S., Taylor, J.: Diffusion Generated Motion by Mean Curvature. Dept. of Mathematics, University of California, Los Angeles (1992)
21.
go back to reference Sethian, J.A. (ed.): Fast Marching Methods and Level Set Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge, UK (1999) Sethian, J.A. (ed.): Fast Marching Methods and Level Set Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge, UK (1999)
22.
go back to reference Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112, 334–363 (1994)CrossRefMathSciNet Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112, 334–363 (1994)CrossRefMathSciNet
23.
go back to reference Conte, D., Tufano, F.: Segmenting wrist bone tissue: enhancements to level set algorithm. In: IEEE International Workshop on, Medical Measurements and Applications, 2009. MeMeA 2009. pp. 177–182 (2009) Conte, D., Tufano, F.: Segmenting wrist bone tissue: enhancements to level set algorithm. In: IEEE International Workshop on, Medical Measurements and Applications, 2009. MeMeA 2009. pp. 177–182 (2009)
24.
go back to reference Dice, L.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRef Dice, L.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRef
25.
go back to reference Bernard, O., Friboulet, D., Thévenaz, P., Fellow, M.: Variational B-spline level-set: a linear filtering approach for fast deformable model evolution. IEEE Trans. Image Process. 18, 1179–1191 (2009)CrossRefMathSciNet Bernard, O., Friboulet, D., Thévenaz, P., Fellow, M.: Variational B-spline level-set: a linear filtering approach for fast deformable model evolution. IEEE Trans. Image Process. 18, 1179–1191 (2009)CrossRefMathSciNet
26.
go back to reference Nadernejad, E., Sharifzadeh, S.: A new method for image segmentation based on Fuzzy C-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process. 7(5), 855–863 (2013)CrossRef Nadernejad, E., Sharifzadeh, S.: A new method for image segmentation based on Fuzzy C-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process. 7(5), 855–863 (2013)CrossRef
27.
go back to reference Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6) (2001) Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6) (2001)
28.
go back to reference Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for BLURRY images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. (2013) Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for BLURRY images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. (2013)
29.
go back to reference Droskey, M., Meyerz, B., Rumpfy, M., Schallerz, K.: An adaptive level set method for medical image segmentation. Inf. Process. Med. Imaging 2082, 416–422 (2001)CrossRef Droskey, M., Meyerz, B., Rumpfy, M., Schallerz, K.: An adaptive level set method for medical image segmentation. Inf. Process. Med. Imaging 2082, 416–422 (2001)CrossRef
30.
go back to reference Li, C., Kao, C.-Y., Gore, jC, Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940–1949 (2008) Li, C., Kao, C.-Y., Gore, jC, Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940–1949 (2008)
32.
go back to reference Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A Geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2) (1997) Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A Geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2) (1997)
33.
go back to reference Bezdek, J.C., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999)CrossRefMATH Bezdek, J.C., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999)CrossRefMATH
34.
go back to reference Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)CrossRefMathSciNet Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)CrossRefMathSciNet
Metadata
Title
Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method
Authors
Siavash Alipour
Jamshid Shanbehzadeh
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 6/2014
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-014-0606-5

Other articles of this Issue 6/2014

Machine Vision and Applications 6/2014 Go to the issue

Premium Partner