Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

07-05-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Fast feature selection for interval-valued data through kernel density estimation entropy

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Jianhua Dai, Ye Liu, Jiaolong Chen, Xiaofeng Liu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Kernel density estimation, which is a non-parametric method about estimating probability density distribution of random variables, has been used in feature selection. However, existing feature selection methods based on kernel density estimation seldom consider interval-valued data. Actually, interval-valued data exist widely. In this paper, a feature selection method based on kernel density estimation for interval-valued data is proposed. Firstly, the kernel function in kernel density estimation is defined for interval-valued data. Secondly, the interval-valued kernel density estimation probability structure is constructed by the defined kernel function, including kernel density estimation conditional probability, kernel density estimation joint probability and kernel density estimation posterior probability. Thirdly, kernel density estimation entropies for interval-valued data are proposed by the constructed probability structure, including information entropy, conditional entropy and joint entropy of kernel density estimation. Fourthly, we propose a feature selection approach based on kernel density estimation entropy. Moreover, we improve the proposed feature selection algorithm and propose a fast feature selection algorithm based on kernel density estimation entropy. Finally, comparative experiments are conducted from three perspectives of computing time, intuitive identifiability and classification performance to show the feasibility and the effectiveness of the proposed method.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue