Skip to main content
Top
Published in:

02-08-2023

Fast Localization Model of Network Intrusion Detection System for Enterprises Using Cloud Computing Environment

Author: Xingzhu Wang

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the advancement of network security, intrusion detection system (IDS) is increasingly used for network-connected environments. As the work of enterprises, governments, and other organizations has increasingly relied on computer network systems, protecting these systems from attacks has become a top priority. IDS has become an essential tool for safeguarding the systems with the increasing number of connected devices. To address the shortcomings of existing IDS, this research proposes an Enterprise Network for Intrusion Detection System (ENIDS) with a fast localization algorithm for cloud-based infrastructure. The proposed system detects and locates attacks by identifying abnormal domain values in the header of packets at the data link layer, network layer, and transport layer. ENIDS comprises three components: an event generator that serves as the source of event record flow, an analysis engine that checks if an attack has occurred based on the information sent by the event generator, and a reaction component that generates a response based on the results of the analysis engine. Additionally, this paper explains the fast localization model of intrusion detection for data of enterprises by explaining keyword selection methods. Experimental results show that the proposed method has a higher localization rate in comparison to direct localization, with a localization rate of 95.7% for the static targets and 92.7% for the dynamic targets. ENIDS has also been compared to existing systems using Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The proposed method has the highest accuracy (96.25%), precision (95.57%), recall (92.24%), and F1-score (93.57%). The simulation results show that the model is effective and can detect and locate the data intrusion behavior quickly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Zhang Y, Lee W, Huang YA (2003) Intrusion detection techniques for mobile wireless networks. Wireless Netw 9:545–556CrossRef Zhang Y, Lee W, Huang YA (2003) Intrusion detection techniques for mobile wireless networks. Wireless Netw 9:545–556CrossRef
2.
go back to reference Dhage SN, Meshram BB (2012) Intrusion detection system in cloud computing environment. International Journal of Cloud Computing 1(2-3):261–282 Dhage SN, Meshram BB (2012) Intrusion detection system in cloud computing environment. International Journal of Cloud Computing 1(2-3):261–282
3.
go back to reference Chon J, Cha H (2011) Lifemap: a smartphone-based context provider for location-based services. IEEE Pervasive Comput 10(2):58–67CrossRef Chon J, Cha H (2011) Lifemap: a smartphone-based context provider for location-based services. IEEE Pervasive Comput 10(2):58–67CrossRef
4.
go back to reference Hsieh CH, Chen JY, Nien BH (2019) Deep learning-based indoor localization using received signal strength and channel state information. IEEE access 7:33256–33267CrossRef Hsieh CH, Chen JY, Nien BH (2019) Deep learning-based indoor localization using received signal strength and channel state information. IEEE access 7:33256–33267CrossRef
5.
go back to reference Ma X, Liu Y, Ouyang C (2022) Capturing semantic features to improve chinese event detection. CAAI Trans Intell Technol 7(2):219–227CrossRef Ma X, Liu Y, Ouyang C (2022) Capturing semantic features to improve chinese event detection. CAAI Trans Intell Technol 7(2):219–227CrossRef
6.
go back to reference Lei Y (2022) Research on microvideo character perception and recognition based on target detection technology. J Comput Cogn Eng 1(2):83–87 Lei Y (2022) Research on microvideo character perception and recognition based on target detection technology. J Comput Cogn Eng 1(2):83–87
7.
go back to reference Kong H, Lu L, Yu J, Chen Y, Tang F (2020) Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans Mob Comput 20(11):3148–3162CrossRef Kong H, Lu L, Yu J, Chen Y, Tang F (2020) Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans Mob Comput 20(11):3148–3162CrossRef
8.
go back to reference Teixeira T, Dublon G, Savvides A (2010) A survey of human-sensing: methods for detecting presence, count, location, track, and identity. ACM-CSUR 5(1):59–69 Teixeira T, Dublon G, Savvides A (2010) A survey of human-sensing: methods for detecting presence, count, location, track, and identity. ACM-CSUR 5(1):59–69
9.
go back to reference Jiang H, Wang M, Zhao P, Xiao Z, Dustdar S (2021) A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Trans Networking 29(5):2228–2241CrossRef Jiang H, Wang M, Zhao P, Xiao Z, Dustdar S (2021) A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Trans Networking 29(5):2228–2241CrossRef
11.
go back to reference Shamshirband S, Fathi M, Chronopoulos AT, Montieri A, Palumbo F, Pescapè A (2020) Computational intelligence intrusion detection techniques in mobile cloud computing environments: review, taxonomy, and open research issues. J Inform Secur Appl 55:102582 Shamshirband S, Fathi M, Chronopoulos AT, Montieri A, Palumbo F, Pescapè A (2020) Computational intelligence intrusion detection techniques in mobile cloud computing environments: review, taxonomy, and open research issues. J Inform Secur Appl 55:102582
12.
go back to reference Ribeiro J, Saghezchi FB, Mantas G, Rodriguez J, Shepherd SJ, Abd-Alhameed RA (2020) An autonomous host-based intrusion detection system for android mobile devices. Mob Networks Appl 25:164–172CrossRef Ribeiro J, Saghezchi FB, Mantas G, Rodriguez J, Shepherd SJ, Abd-Alhameed RA (2020) An autonomous host-based intrusion detection system for android mobile devices. Mob Networks Appl 25:164–172CrossRef
14.
go back to reference Chen Z (2022) Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm. J Comput Cogn Eng 1(3):103–108 Chen Z (2022) Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm. J Comput Cogn Eng 1(3):103–108
16.
go back to reference Lv J, Man D, Yang W, Du X, Yu M (2017) Robust WLAN-based indoor intrusion detection using PHY layer information. IEEE Access 6:30117–30127CrossRef Lv J, Man D, Yang W, Du X, Yu M (2017) Robust WLAN-based indoor intrusion detection using PHY layer information. IEEE Access 6:30117–30127CrossRef
17.
go back to reference Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inform Syst (TOIS) 10(1):91–102CrossRef Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inform Syst (TOIS) 10(1):91–102CrossRef
18.
go back to reference Liu G (2021) Data collection in mi-assisted wireless powered underground sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138CrossRef Liu G (2021) Data collection in mi-assisted wireless powered underground sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138CrossRef
21.
go back to reference Sun Y, Ma P, Dai J, Li D (2022) A cloud Bayesian network approach to situation assessment of scouting underwater targets with fixed-wing patrol aircraft. Ecological Modelling, p 418 Sun Y, Ma P, Dai J, Li D (2022) A cloud Bayesian network approach to situation assessment of scouting underwater targets with fixed-wing patrol aircraft. Ecological Modelling, p 418
22.
go back to reference Ni LM, Liu Y, Lau YC, Patil AP (2003) Landmarc: Indoor location sensing using active RFID. Pervasive Computing and Communications, 2003. (PerCom 2003). In: Proceedings of the First IEEE International Conference on. IEEE Ni LM, Liu Y, Lau YC, Patil AP (2003) Landmarc: Indoor location sensing using active RFID. Pervasive Computing and Communications, 2003. (PerCom 2003). In: Proceedings of the First IEEE International Conference on. IEEE
23.
go back to reference Chan YT, Hang HYC, Ching PC (2006) Exact and approximate maximum likelihood localization algorithms. IEEE Trans Veh Technol 55(1):10–16CrossRef Chan YT, Hang HYC, Ching PC (2006) Exact and approximate maximum likelihood localization algorithms. IEEE Trans Veh Technol 55(1):10–16CrossRef
24.
go back to reference Zhang D, Ma J, Chen Q, Ni LM (2007) March. "An RF-Based System for Tracking Transceiver-Free Objects". In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07), White Plains, NY, USA, 2007, pp 135–144. https://doi.org/10.1109/PERCOM.2007.8 Zhang D, Ma J, Chen Q, Ni LM (2007) March. "An RF-Based System for Tracking Transceiver-Free Objects". In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07), White Plains, NY, USA, 2007, pp 135–144. https://​doi.​org/​10.​1109/​PERCOM.​2007.​8
26.
go back to reference Wallbaum M, Diepolder S (2006) October. A motion detection scheme for wireless LAN stations. The 3rd international conference on mobile computing and ubiquitous networking, pp 2–9 Wallbaum M, Diepolder S (2006) October. A motion detection scheme for wireless LAN stations. The 3rd international conference on mobile computing and ubiquitous networking, pp 2–9
27.
go back to reference Sun Z, Xu Y, Liang G, Zhou Z (2017) An intrusion detection model for wireless sensor networks with an improved V-detector algorithm. IEEE Sens J 18(5):1971–1984CrossRef Sun Z, Xu Y, Liang G, Zhou Z (2017) An intrusion detection model for wireless sensor networks with an improved V-detector algorithm. IEEE Sens J 18(5):1971–1984CrossRef
29.
go back to reference Sudqi Khater B, Abdul Wahab AWB, Idris MYIB, Abdulla Hussain M, Ahmed Ibrahim A (2019) A lightweight perceptron-based intrusion detection system for fog computing. Appl Sci 9(1):178CrossRef Sudqi Khater B, Abdul Wahab AWB, Idris MYIB, Abdulla Hussain M, Ahmed Ibrahim A (2019) A lightweight perceptron-based intrusion detection system for fog computing. Appl Sci 9(1):178CrossRef
30.
go back to reference Haseeb K, Islam N, Almogren A, Din IU (2019) Intrusion prevention framework for secure routing in WSN-based mobile internet of things. Ieee Access 7:185496–185505CrossRef Haseeb K, Islam N, Almogren A, Din IU (2019) Intrusion prevention framework for secure routing in WSN-based mobile internet of things. Ieee Access 7:185496–185505CrossRef
31.
go back to reference Usman M, Jan MA, He X, Chen J (2019) A survey on representation learning efforts in cybersecurity domain. ACM Comput Surv (CSUR) 52(6):1–28CrossRef Usman M, Jan MA, He X, Chen J (2019) A survey on representation learning efforts in cybersecurity domain. ACM Comput Surv (CSUR) 52(6):1–28CrossRef
32.
go back to reference Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1):1–22CrossRef Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1):1–22CrossRef
33.
go back to reference Caminero G, Lopez-Martin M, Carro B (2019) Adversarial environment reinforcement learning algorithm for intrusion detection. Comput Netw 159:96–109CrossRef Caminero G, Lopez-Martin M, Carro B (2019) Adversarial environment reinforcement learning algorithm for intrusion detection. Comput Netw 159:96–109CrossRef
35.
go back to reference Liang J, Jing T, Niu H, Wang J (2020) Two-terminal fault location method of distribution network based on adaptive convolution neural network. IEEE Access 8:54035–54043CrossRef Liang J, Jing T, Niu H, Wang J (2020) Two-terminal fault location method of distribution network based on adaptive convolution neural network. IEEE Access 8:54035–54043CrossRef
Metadata
Title
Fast Localization Model of Network Intrusion Detection System for Enterprises Using Cloud Computing Environment
Author
Xingzhu Wang
Publication date
02-08-2023
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02176-w