Skip to main content
Top
Published in: Journal of Scientific Computing 1/2016

05-03-2016

Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems

Authors: Bin Zheng, Luoping Chen, Xiaozhe Hu, Long Chen, Ricardo H. Nochetto, Jinchao Xu

Published in: Journal of Scientific Computing | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigate the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972)CrossRef Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972)CrossRef
2.
go back to reference Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301–314 (2013)MathSciNetCrossRefMATH Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301–314 (2013)MathSciNetCrossRefMATH
3.
go back to reference Axelsson, O., Neytcheva, M.: Operator splitting for solving nonlinear, coupled multiphysics problems with application to numerical solution of an interface problem. TR2011-009 Institute for Information Technology, Uppsala University (2011) Axelsson, O., Neytcheva, M.: Operator splitting for solving nonlinear, coupled multiphysics problems with application to numerical solution of an interface problem. TR2011-009 Institute for Information Technology, Uppsala University (2011)
4.
go back to reference Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2013)MathSciNetCrossRefMATH Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2013)MathSciNetCrossRefMATH
5.
go back to reference Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655–675 (2013)MathSciNetCrossRefMATH Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655–675 (2013)MathSciNetCrossRefMATH
6.
go back to reference Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)MathSciNetCrossRefMATH Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)MathSciNetCrossRefMATH
7.
go back to reference Baňas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)MathSciNetMATH Baňas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)MathSciNetMATH
8.
go back to reference Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)MathSciNetCrossRefMATH Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)MathSciNetCrossRefMATH
9.
go back to reference Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)MathSciNetCrossRefMATH Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)MathSciNetCrossRefMATH
10.
go back to reference Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2011)MathSciNetCrossRefMATH Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2011)MathSciNetCrossRefMATH
11.
go back to reference Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetCrossRefMATH Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetCrossRefMATH
12.
13.
go back to reference Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)MathSciNetCrossRefMATH Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)MathSciNetCrossRefMATH
14.
go back to reference Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part I: mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)MathSciNetCrossRefMATH Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part I: mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)MathSciNetCrossRefMATH
15.
go back to reference Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)MathSciNetCrossRefMATH Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)MathSciNetCrossRefMATH
16.
go back to reference Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)MathSciNetCrossRefMATH Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)MathSciNetCrossRefMATH
17.
go back to reference Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)MathSciNetCrossRef Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)MathSciNetCrossRef
18.
go back to reference Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)MathSciNetCrossRefMATH Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)MathSciNetCrossRefMATH
19.
go back to reference Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014)MathSciNetCrossRef Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014)MathSciNetCrossRef
20.
go back to reference Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations, pp. 53–147 (1979) Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations, pp. 53–147 (1979)
21.
go back to reference Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)MATH Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)MATH
22.
go back to reference Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (2004)CrossRef Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (2004)CrossRef
23.
go back to reference Chen, C.M., Thomée, V.: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B Appl. Math. 26(03), 329–354 (1985)MathSciNetCrossRefMATH Chen, C.M., Thomée, V.: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B Appl. Math. 26(03), 329–354 (1985)MathSciNetCrossRefMATH
24.
go back to reference Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009) Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)
25.
go back to reference Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. Submitted (2014) Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. Submitted (2014)
26.
go back to reference Chen, L.: Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl. 70(12), 2854–2866 (2015)MathSciNetCrossRef Chen, L.: Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl. 70(12), 2854–2866 (2015)MathSciNetCrossRef
27.
go back to reference Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18(1–2), 113–126 (2005)MathSciNetCrossRefMATH Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18(1–2), 113–126 (2005)MathSciNetCrossRefMATH
28.
go back to reference Christon, M.A.: The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng. 173(1), 147–166 (1999)CrossRefMATH Christon, M.A.: The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng. 173(1), 147–166 (1999)CrossRefMATH
29.
go back to reference Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)MathSciNetCrossRefMATH Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)MathSciNetCrossRefMATH
30.
go back to reference Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer (1989) Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer (1989)
31.
go back to reference Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)MathSciNetCrossRefMATH Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)MathSciNetCrossRefMATH
32.
go back to reference Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)MathSciNetCrossRefMATH Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)MathSciNetCrossRefMATH
33.
go back to reference Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)MathSciNetCrossRefMATH Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)MathSciNetCrossRefMATH
34.
go back to reference Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)MathSciNetCrossRefMATH Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)MathSciNetCrossRefMATH
35.
go back to reference Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)MathSciNetCrossRefMATH Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)MathSciNetCrossRefMATH
36.
go back to reference Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetCrossRefMATH Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)MathSciNetCrossRefMATH
37.
go back to reference Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. J. Comput. Math. 26(6), 767–796 (2008)MathSciNet Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. J. Comput. Math. 26(6), 767–796 (2008)MathSciNet
38.
go back to reference Fried, I.: Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices. Int. J. Solids Struct. 9(9), 1013–1034 (1973)MathSciNetCrossRefMATH Fried, I.: Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices. Int. J. Solids Struct. 9(9), 1013–1034 (1973)MathSciNetCrossRefMATH
39.
go back to reference Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001)MathSciNetCrossRefMATH Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001)MathSciNetCrossRefMATH
40.
go back to reference Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)MathSciNetCrossRefMATH Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)MathSciNetCrossRefMATH
41.
go back to reference Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Volume 55 of Lecture Notes in Computational Science Engineering, pp. 91–102. Springer, Berlin (2007) Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Volume 55 of Lecture Notes in Computational Science Engineering, pp. 91–102. Springer, Berlin (2007)
42.
go back to reference Greer, J.B., Bertozzi, A.L.: \({H}^{1}\) solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1/2), 349–366 (2004)MathSciNetMATH Greer, J.B., Bertozzi, A.L.: \({H}^{1}\) solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1/2), 349–366 (2004)MathSciNetMATH
43.
go back to reference Gresho, P.M., Lee, R.L., Sani, R.L.: Advection-dominated flows, with emphasis on the consequences of mass lumping. Finite Elem. Fluids 1, 335–350 (1978)MATH Gresho, P.M., Lee, R.L., Sani, R.L.: Advection-dominated flows, with emphasis on the consequences of mass lumping. Finite Elem. Fluids 1, 335–350 (1978)MATH
44.
go back to reference He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 24(6), 1485–1500 (2008)MathSciNetCrossRefMATH He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 24(6), 1485–1500 (2008)MathSciNetCrossRefMATH
45.
go back to reference Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)MathSciNetCrossRefMATH Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)MathSciNetCrossRefMATH
46.
go back to reference Hinton, E., Rock, T., Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn. 4(3), 245–249 (1976)CrossRef Hinton, E., Rock, T., Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn. 4(3), 245–249 (1976)CrossRef
47.
go back to reference Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)MathSciNetCrossRefMATH Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)MathSciNetCrossRefMATH
48.
go back to reference Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)MathSciNetCrossRefMATH Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)MathSciNetCrossRefMATH
49.
go back to reference King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286(2), 459–490 (2003)MathSciNetCrossRefMATH King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286(2), 459–490 (2003)MathSciNetCrossRefMATH
50.
go back to reference Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48 (2009)MathSciNetCrossRefMATH Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48 (2009)MathSciNetCrossRefMATH
51.
go back to reference Mullen, R., Belytschko, T.: Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng. 18(1), 11–29 (1982)MathSciNetCrossRefMATH Mullen, R., Belytschko, T.: Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng. 18(1), 11–29 (1982)MathSciNetCrossRefMATH
52.
go back to reference Niclasen, D.A., Blackburn, H.M.: A comparison of mass lumping techniques for the two-dimensional Navier–Stokes equations.pdf. In: Twelfth Australasian Fluid Mechanics Conference, pp. 731–734. The Univesity of Sydney (1995) Niclasen, D.A., Blackburn, H.M.: A comparison of mass lumping techniques for the two-dimensional Navier–Stokes equations.pdf. In: Twelfth Australasian Fluid Mechanics Conference, pp. 731–734. The Univesity of Sydney (1995)
53.
go back to reference Olshanskii, M.A., Reusken, A.: Navier–Stokes equations in rotation form: a robust multigrid solver for the velocity problem. SIAM J. Sci. Comput. 23(5), 1683–1706 (2002)MathSciNetCrossRefMATH Olshanskii, M.A., Reusken, A.: Navier–Stokes equations in rotation form: a robust multigrid solver for the velocity problem. SIAM J. Sci. Comput. 23(5), 1683–1706 (2002)MathSciNetCrossRefMATH
55.
56.
go back to reference Sun, Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64(212), 1463–1471 (1995)MathSciNetMATH Sun, Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64(212), 1463–1471 (1995)MathSciNetMATH
57.
go back to reference Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)MathSciNetCrossRefMATH Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)MathSciNetCrossRefMATH
58.
go back to reference Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Univeristy Press, Princeton (2005)MATH Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Univeristy Press, Princeton (2005)MATH
59.
go back to reference Ushijima, T.: On the uniform convergence for the lumped mass approximation of the heat equation. J. Fac. Sci. Univ. Tokyo 24, 477–490 (1977)MathSciNetMATH Ushijima, T.: On the uniform convergence for the lumped mass approximation of the heat equation. J. Fac. Sci. Univ. Tokyo 24, 477–490 (1977)MathSciNetMATH
60.
go back to reference Ushijima, T.: Error estimates for the lumped mass approximation of the heat equation. Mem. Numer. Math. 6, 65–82 (1979)MathSciNetMATH Ushijima, T.: Error estimates for the lumped mass approximation of the heat equation. Mem. Numer. Math. 6, 65–82 (1979)MathSciNetMATH
61.
go back to reference Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)MathSciNetCrossRefMATH Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)MathSciNetCrossRefMATH
62.
go back to reference Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)MathSciNetCrossRefMATH Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)MathSciNetCrossRefMATH
63.
go back to reference Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)MathSciNetCrossRefMATH Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)MathSciNetCrossRefMATH
64.
go back to reference Wittum, G.: Multigrid methods for Stokes and Navier–Stokes eqautions with transforming smoothers: algorithms and numerical results. Numer. Math. 54(5), 543–563 (1989)MathSciNetCrossRefMATH Wittum, G.: Multigrid methods for Stokes and Navier–Stokes eqautions with transforming smoothers: algorithms and numerical results. Numer. Math. 54(5), 543–563 (1989)MathSciNetCrossRefMATH
65.
go back to reference Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)MathSciNetCrossRefMATH Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)MathSciNetCrossRefMATH
66.
go back to reference Ye, X., Cheng, X.: The Fourier spectral method for the Cahn–Hilliard equations. Numer. Math. 171(1), 345–357 (2005)MathSciNetMATH Ye, X., Cheng, X.: The Fourier spectral method for the Cahn–Hilliard equations. Numer. Math. 171(1), 345–357 (2005)MathSciNetMATH
67.
go back to reference Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010)MathSciNetCrossRefMATH Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010)MathSciNetCrossRefMATH
Metadata
Title
Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems
Authors
Bin Zheng
Luoping Chen
Xiaozhe Hu
Long Chen
Ricardo H. Nochetto
Jinchao Xu
Publication date
05-03-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0189-6

Other articles of this Issue 1/2016

Journal of Scientific Computing 1/2016 Go to the issue

Premium Partner