Skip to main content
Top

2013 | OriginalPaper | Chapter

9. Fast Photochemical Oxidation of Proteins for Structural Characterization

Author : Lisa M. Jones

Published in: Characterization of Protein Therapeutics using Mass Spectrometry

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Protein footprinting coupled with mass spectrometry (MS) has become a powerful tool for studying protein interactions. There are many types of footprinting labels that can be reversible or irreversible, and in either case they can be either general or specific for a particular amino acid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Englander SW et al (1997) Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci 6(5):1101–1109CrossRef Englander SW et al (1997) Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci 6(5):1101–1109CrossRef
2.
go back to reference Engen JR, Smith DL (2000) Investigating the higher order structure of proteins. Hydrogen exchange, proteolytic fragmentation, and mass spectrometry. Meth Mol Biol 146:95–112 Engen JR, Smith DL (2000) Investigating the higher order structure of proteins. Hydrogen exchange, proteolytic fragmentation, and mass spectrometry. Meth Mol Biol 146:95–112
3.
go back to reference Hoofnagle AN et al (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32:1–25CrossRef Hoofnagle AN et al (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32:1–25CrossRef
4.
go back to reference Hanai R, Wang JC (1994) Protein footprinting by the combined use of reversible and irreversible lysine modifications. Proc Natl Acad Sci USA 91(25):11904–11908CrossRef Hanai R, Wang JC (1994) Protein footprinting by the combined use of reversible and irreversible lysine modifications. Proc Natl Acad Sci USA 91(25):11904–11908CrossRef
5.
go back to reference Li W, Wang JC (1997) Footprinting of yeast DNA topoisomerase II lysyl side chains involved in substrate binding and interdomainal interactions. J Biol Chem 272(49):31190–31195CrossRef Li W, Wang JC (1997) Footprinting of yeast DNA topoisomerase II lysyl side chains involved in substrate binding and interdomainal interactions. J Biol Chem 272(49):31190–31195CrossRef
6.
go back to reference Brenowitz M et al (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr Opin Struct Biol 12(5):648–653CrossRef Brenowitz M et al (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr Opin Struct Biol 12(5):648–653CrossRef
7.
go back to reference Maleknia SD, Downard K (2001) Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom Rev 20(6):388–401CrossRef Maleknia SD, Downard K (2001) Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom Rev 20(6):388–401CrossRef
8.
go back to reference Su DA et al (2011) Interactions of apurinic/apyrimidinic endonuclease with a redox inhibitor: evidence for an alternate conformation of the enzyme. Biochemistry 50(1):82–92CrossRef Su DA et al (2011) Interactions of apurinic/apyrimidinic endonuclease with a redox inhibitor: evidence for an alternate conformation of the enzyme. Biochemistry 50(1):82–92CrossRef
9.
go back to reference Wen J et al (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106(15):6134–6139CrossRef Wen J et al (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106(15):6134–6139CrossRef
10.
go back to reference Wei H et al (2012) Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J Am Soc Mass Spectrom Wei H et al (2012) Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J Am Soc Mass Spectrom
11.
go back to reference Zhang J et al (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18(5):556–563CrossRef Zhang J et al (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18(5):556–563CrossRef
12.
go back to reference Pan J et al (2009) Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 131(35):12801–12808CrossRef Pan J et al (2009) Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 131(35):12801–12808CrossRef
13.
go back to reference Sperry JB et al (2008) Strong anion exchange for studying protein-DNA interactions by H/D exchange mass spectrometry. J Am Soc Mass Spectrom 19(6):887–890CrossRef Sperry JB et al (2008) Strong anion exchange for studying protein-DNA interactions by H/D exchange mass spectrometry. J Am Soc Mass Spectrom 19(6):887–890CrossRef
14.
go back to reference Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107(8):3514–3543CrossRef Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107(8):3514–3543CrossRef
15.
go back to reference Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci USA 83(15):5469–5473CrossRef Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci USA 83(15):5469–5473CrossRef
16.
go back to reference Maleknia SD et al (1999) Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal Chem 71(18):3965–3973CrossRef Maleknia SD et al (1999) Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal Chem 71(18):3965–3973CrossRef
17.
go back to reference Brenowitz M et al (2005) Catching RNA polymerase in the act of binding: intermediates in transcription illuminated by synchrotron footprinting. Proc Natl Acad Sci USA 102(13):4659–4660CrossRef Brenowitz M et al (2005) Catching RNA polymerase in the act of binding: intermediates in transcription illuminated by synchrotron footprinting. Proc Natl Acad Sci USA 102(13):4659–4660CrossRef
18.
go back to reference Xu G et al (2005) Structural allostery and binding of the transferrin*receptor complex. Mol Cell Proteomics 4(12):1959–1967CrossRef Xu G et al (2005) Structural allostery and binding of the transferrin*receptor complex. Mol Cell Proteomics 4(12):1959–1967CrossRef
19.
go back to reference Gupta S et al (2010) Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure 18(7):839–846CrossRef Gupta S et al (2010) Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure 18(7):839–846CrossRef
20.
go back to reference Sharp JS et al (2006) Measurement of multisite oxidation kinetics reveals an active site conformational change in Spo0F as a result of protein oxidation. Biochemistry 45(20):6260–6266CrossRef Sharp JS et al (2006) Measurement of multisite oxidation kinetics reveals an active site conformational change in Spo0F as a result of protein oxidation. Biochemistry 45(20):6260–6266CrossRef
21.
go back to reference Sharp JS et al (2004) Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal Chem 76(3):672–683CrossRef Sharp JS et al (2004) Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal Chem 76(3):672–683CrossRef
22.
go back to reference Aye TT et al (2005) Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry. Anal Chem 77(18):5814–5822CrossRef Aye TT et al (2005) Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry. Anal Chem 77(18):5814–5822CrossRef
23.
go back to reference Hambly DM, Gross ML (2005) Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J Am Soc Mass Spectrom 16(12):2057–2063CrossRef Hambly DM, Gross ML (2005) Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J Am Soc Mass Spectrom 16(12):2057–2063CrossRef
24.
go back to reference Pan Y et al (2009) Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry. J Mol Biol 394(5):968–981CrossRef Pan Y et al (2009) Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry. J Mol Biol 394(5):968–981CrossRef
25.
go back to reference Pan Y et al (2009) Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry. Anal Chem 81(1):28–35CrossRef Pan Y et al (2009) Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry. Anal Chem 81(1):28–35CrossRef
26.
go back to reference Pan Y et al (2010) Site-directed mutagenesis combined with oxidative methionine labeling for probing structural transitions of a membrane protein by mass spectrometry. J Am Soc Mass Spectrom 21(11):1947–1956 Pan Y et al (2010) Site-directed mutagenesis combined with oxidative methionine labeling for probing structural transitions of a membrane protein by mass spectrometry. J Am Soc Mass Spectrom 21(11):1947–1956
27.
go back to reference Stocks BB, Konermann L (2009) Structural characterization of short-lived protein unfolding intermediates by laser-induced oxidative labeling and mass spectrometry. Anal Chem 81(1):20–27CrossRef Stocks BB, Konermann L (2009) Structural characterization of short-lived protein unfolding intermediates by laser-induced oxidative labeling and mass spectrometry. Anal Chem 81(1):20–27CrossRef
28.
go back to reference Stocks BB, Konermann L (2010) Time-dependent changes in side-chain solvent accessibility during cytochrome c folding probed by pulsed oxidative labeling and mass spectrometry. J Mol Biol 398(2):362–373CrossRef Stocks BB, Konermann L (2010) Time-dependent changes in side-chain solvent accessibility during cytochrome c folding probed by pulsed oxidative labeling and mass spectrometry. J Mol Biol 398(2):362–373CrossRef
29.
go back to reference Watson C et al (2009) Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal Chem 81(7):2496–2505CrossRef Watson C et al (2009) Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal Chem 81(7):2496–2505CrossRef
30.
go back to reference West GM et al (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass-spectrometry based strategy. Anal Chem 80(11):4175–4185CrossRef West GM et al (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass-spectrometry based strategy. Anal Chem 80(11):4175–4185CrossRef
31.
go back to reference Shum WK et al (2005) Onset of oxidative damage in alpha-crystallin by radical probe mass spectrometry. Anal Biochem 344(2):247–256CrossRef Shum WK et al (2005) Onset of oxidative damage in alpha-crystallin by radical probe mass spectrometry. Anal Biochem 344(2):247–256CrossRef
32.
go back to reference Sharp JS, Tomer KB (2007) Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Biophys J 92(5):1682–1692CrossRef Sharp JS, Tomer KB (2007) Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Biophys J 92(5):1682–1692CrossRef
33.
go back to reference Konermann L et al (2010) Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom Rev 29(4):651–667 Konermann L et al (2010) Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom Rev 29(4):651–667
34.
go back to reference Gau BC et al (2009) Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal Chem 81(16):6563–6571CrossRef Gau BC et al (2009) Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal Chem 81(16):6563–6571CrossRef
35.
go back to reference Hambly D, Gross M (2007) Laser flash photochemical oxidation to locate heme binding and conformational changes in myoglobin. Int J Mass Spectrom 259(1–3):124–129 Hambly D, Gross M (2007) Laser flash photochemical oxidation to locate heme binding and conformational changes in myoglobin. Int J Mass Spectrom 259(1–3):124–129
36.
go back to reference Liu J, Konermann L (2009) Irreversible thermal denaturation of cytochrome C studied by electrospray mass spectrometry. J Am Soc Mass Spectrom 20(5):819–828CrossRef Liu J, Konermann L (2009) Irreversible thermal denaturation of cytochrome C studied by electrospray mass spectrometry. J Am Soc Mass Spectrom 20(5):819–828CrossRef
37.
go back to reference Venkatesh S et al (2007) Rapid identification of oxidation-induced conformational changes by kinetic analysis. Rapid Commun Mass Spectrom 21(23):3927–3936CrossRef Venkatesh S et al (2007) Rapid identification of oxidation-induced conformational changes by kinetic analysis. Rapid Commun Mass Spectrom 21(23):3927–3936CrossRef
38.
go back to reference Xu G et al (2003) Radiolytic modification of basic amino acid residues in peptides: probes for examining protein–protein interactions. Anal Chem 75(24):6995–7007CrossRef Xu G et al (2003) Radiolytic modification of basic amino acid residues in peptides: probes for examining protein–protein interactions. Anal Chem 75(24):6995–7007CrossRef
39.
go back to reference Xu G, Chance MR (2004) Radiolytic modification of acidic amino acid residues in peptides: probes for examining protein–protein interactions. Anal Chem 76(5):1213–1221CrossRef Xu G, Chance MR (2004) Radiolytic modification of acidic amino acid residues in peptides: probes for examining protein–protein interactions. Anal Chem 76(5):1213–1221CrossRef
40.
go back to reference Gau BC et al (2010) Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins. Anal Chem 82(18):7821–7827CrossRef Gau BC et al (2010) Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins. Anal Chem 82(18):7821–7827CrossRef
41.
go back to reference Jones LM et al (2011) Fast photochemical oxidation of proteins for epitope mapping. Anal Chem 83(20):7657–7661CrossRef Jones LM et al (2011) Fast photochemical oxidation of proteins for epitope mapping. Anal Chem 83(20):7657–7661CrossRef
42.
go back to reference Zhang H et al (2010) Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal Chem 83(1):311–318CrossRef Zhang H et al (2010) Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal Chem 83(1):311–318CrossRef
43.
go back to reference Ikura M et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256(5057):632–638CrossRef Ikura M et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256(5057):632–638CrossRef
44.
go back to reference Wan KX et al (2002) Comparing similar spectra: from similarity index to spectral contrast angle. J Am Soc Mass Spectrom 13(1):85–88CrossRef Wan KX et al (2002) Comparing similar spectra: from similarity index to spectral contrast angle. J Am Soc Mass Spectrom 13(1):85–88CrossRef
45.
go back to reference Cree B (2006) Emerging monoclonal antibody therapies for multiple sclerosis. Neurologist 12(4):171–178CrossRef Cree B (2006) Emerging monoclonal antibody therapies for multiple sclerosis. Neurologist 12(4):171–178CrossRef
46.
go back to reference Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6(5):349–356CrossRef Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6(5):349–356CrossRef
47.
go back to reference Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104CrossRef Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104CrossRef
48.
go back to reference Benjamin DC et al (1984) The antigenic structure of proteins: a reappraisal. Annu Rev Immunol 2:67–101CrossRef Benjamin DC et al (1984) The antigenic structure of proteins: a reappraisal. Annu Rev Immunol 2:67–101CrossRef
49.
go back to reference Mylvaganam SE et al (1998) Structural basis for the binding of an anti-cytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 A resolution and FabE8 to 2.26 A resolution. J Mol Biol 281(2):301–322CrossRef Mylvaganam SE et al (1998) Structural basis for the binding of an anti-cytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 A resolution and FabE8 to 2.26 A resolution. J Mol Biol 281(2):301–322CrossRef
50.
go back to reference El-Kased RF et al (2011) A novel mass spectrometric epitope mapping approach without immobilization of the antibody. J Proteomics Bioinform 4(1):001–009CrossRef El-Kased RF et al (2011) A novel mass spectrometric epitope mapping approach without immobilization of the antibody. J Proteomics Bioinform 4(1):001–009CrossRef
51.
go back to reference Baerga-Ortiz A et al (2002) Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 11(6):1300–1308CrossRef Baerga-Ortiz A et al (2002) Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 11(6):1300–1308CrossRef
52.
go back to reference van de Locht A et al (1997) The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin. EMBO J 16(11):2977–2984CrossRef van de Locht A et al (1997) The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin. EMBO J 16(11):2977–2984CrossRef
53.
go back to reference Rezaie AR et al (1998) Thrombomodulin increases the rate of thrombin inhibition by BPTI. Biochemistry 37(2):693–699CrossRef Rezaie AR et al (1998) Thrombomodulin increases the rate of thrombin inhibition by BPTI. Biochemistry 37(2):693–699CrossRef
54.
go back to reference Herman C (2011) Fast, reliable too characterizes antibodies. Chem Eng News Herman C (2011) Fast, reliable too characterizes antibodies. Chem Eng News
55.
go back to reference Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630CrossRef Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630CrossRef
56.
go back to reference Strittmatter WJ et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90(5):1977–1981CrossRef Strittmatter WJ et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90(5):1977–1981CrossRef
57.
go back to reference Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97(6):2892–2897CrossRef Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97(6):2892–2897CrossRef
58.
go back to reference Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923CrossRef Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923CrossRef
59.
go back to reference Garai K, Frieden C (2010) The association-dissociation behavior of the ApoE proteins: kinetic and equilibrium studies. Biochemistry 49(44):9533–9541CrossRef Garai K, Frieden C (2010) The association-dissociation behavior of the ApoE proteins: kinetic and equilibrium studies. Biochemistry 49(44):9533–9541CrossRef
60.
go back to reference Gau B et al (2011) Mass spectrometry-based protein footprinting characterizes the structures of oligomeric apolipoprotein E2, E3, and E4. Biochemistry 50(38):8117–8126CrossRef Gau B et al (2011) Mass spectrometry-based protein footprinting characterizes the structures of oligomeric apolipoprotein E2, E3, and E4. Biochemistry 50(38):8117–8126CrossRef
61.
go back to reference Garai K et al (2011) Dissociation of apolipoprotein E oligomers to monomer is required for high-affinity binding to phospholipid vesicles. Biochemistry 50(13):2550–2558CrossRef Garai K et al (2011) Dissociation of apolipoprotein E oligomers to monomer is required for high-affinity binding to phospholipid vesicles. Biochemistry 50(13):2550–2558CrossRef
62.
go back to reference Zhang Y et al (2007) A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry 46(37):10722–10732CrossRef Zhang Y et al (2007) A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry 46(37):10722–10732CrossRef
63.
go back to reference Chen J et al (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci USA 108(36):14813–14818CrossRef Chen J et al (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci USA 108(36):14813–14818CrossRef
64.
go back to reference Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45:249–302CrossRef Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45:249–302CrossRef
65.
go back to reference Westerlund JA, Weisgraber KH (1993) Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J Biol Chem 268(21):15745–15750 Westerlund JA, Weisgraber KH (1993) Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J Biol Chem 268(21):15745–15750
66.
go back to reference Aggerbeck LP et al (1988) Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem 263(13):6249–6258 Aggerbeck LP et al (1988) Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem 263(13):6249–6258
67.
go back to reference Chen J et al (2010) Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J Am Chem Soc 132(44):15502–15504CrossRef Chen J et al (2010) Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J Am Chem Soc 132(44):15502–15504CrossRef
68.
go back to reference Nolting B et al (1997) The folding pathway of a protein at high resolution from microseconds to seconds. Proc Natl Acad Sci USA 94(3):826–830CrossRef Nolting B et al (1997) The folding pathway of a protein at high resolution from microseconds to seconds. Proc Natl Acad Sci USA 94(3):826–830CrossRef
69.
go back to reference Davies MJ, Dean RT (1997) Radical-mediated protein oxidation: from chemistry to medicine. Oxford science publications. Oxford University Press, New York Davies MJ, Dean RT (1997) Radical-mediated protein oxidation: from chemistry to medicine. Oxford science publications. Oxford University Press, New York
70.
go back to reference Bridgewater JD et al (2006) Transition metal-peptide binding studied by metal-catalyzed oxidation reactions and mass spectrometry. Anal Chem 78(7):2432–2438CrossRef Bridgewater JD et al (2006) Transition metal-peptide binding studied by metal-catalyzed oxidation reactions and mass spectrometry. Anal Chem 78(7):2432–2438CrossRef
71.
go back to reference Kretsinger RH (1968) A crystallographic study of iodinated sperm whale metmyoglobin. J Mol Biol 31(2):315–318CrossRef Kretsinger RH (1968) A crystallographic study of iodinated sperm whale metmyoglobin. J Mol Biol 31(2):315–318CrossRef
72.
go back to reference Ghosh D et al (1999) Determination of a protein structure by iodination: the structure of iodinated acetylxylan esterase. Acta Crystallogr D Biol Crystallogr 55(Pt 4):779–784CrossRef Ghosh D et al (1999) Determination of a protein structure by iodination: the structure of iodinated acetylxylan esterase. Acta Crystallogr D Biol Crystallogr 55(Pt 4):779–784CrossRef
73.
go back to reference Chen J et al (2012) New protein footprinting: fast photochemical iodination combined with top-down and bottom-up mass spectrometry. J Am Soc Mass Spectrom 23(8):1306–1318CrossRef Chen J et al (2012) New protein footprinting: fast photochemical iodination combined with top-down and bottom-up mass spectrometry. J Am Soc Mass Spectrom 23(8):1306–1318CrossRef
74.
go back to reference Li CH (1944) Kinetics of reactions between iodine and histidine. J Am Chem Soc 66(2):225–227CrossRef Li CH (1944) Kinetics of reactions between iodine and histidine. J Am Chem Soc 66(2):225–227CrossRef
75.
go back to reference Gomez GE et al (2012) Probing protein surface with a solvent mimetic carbene coupled to detection by mass spectrometry. J Am Soc Mass Spectrom 23(1):30–42CrossRef Gomez GE et al (2012) Probing protein surface with a solvent mimetic carbene coupled to detection by mass spectrometry. J Am Soc Mass Spectrom 23(1):30–42CrossRef
76.
go back to reference Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical-review of rate constants for reactions of hydrated electrons hydrogen-atoms and hydroxyl radicals (∙OH/∙O−) in aqueous- solution. J Phys Chem Ref Data 17:513–886CrossRef Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical-review of rate constants for reactions of hydrated electrons hydrogen-atoms and hydroxyl radicals (∙OH/∙O−) in aqueous- solution. J Phys Chem Ref Data 17:513–886CrossRef
Metadata
Title
Fast Photochemical Oxidation of Proteins for Structural Characterization
Author
Lisa M. Jones
Copyright Year
2013
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7862-2_9

Premium Partners