Skip to main content
Top
Published in: Computational Mechanics 1/2019

02-01-2019 | Original Paper

Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method

Authors: M. Pingaro, E. Reccia, P. Trovalusci, R. Masiani

Published in: Computational Mechanics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical behaviour of particle composite materials is growing of interest to engineering applications. A computational homogenization procedure in conjunction with a statistical approach have been successfully adopted for the definition of the representative volume element (RVE) size, that in random media is an unknown of the problem, and of the related equivalent elastic moduli. Drawback of such a statistical approach to homogenization is the high computational cost, which prevents the possibility to perform series of parametric analyses. In this work, we propose a so-called fast statistical homogenization procedure (FSHP) developed within an integrated framework that automates all the steps to perform. Furthermore within the FSHP, we adopt the numerical framework of the virtual element method for numerical simulations to reduce the computational burden. The computational strategies and the discretization adopted allow us to efficiently solve the series (hundreds) of simulations and to rapidly converge to the RVE size detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163CrossRefMATH Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163CrossRefMATH
2.
go back to reference Artioli E, Beirão Da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Comput Mech 60(3):355–377MathSciNetCrossRefMATH Artioli E, Beirão Da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Comput Mech 60(3):355–377MathSciNetCrossRefMATH
3.
go back to reference Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principle of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principle of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH
4.
5.
go back to reference Beirão Da Veiga L, Brezzi F, Marini LD, Russo A (2014) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541–1573MathSciNetCrossRefMATH Beirão Da Veiga L, Brezzi F, Marini LD, Russo A (2014) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541–1573MathSciNetCrossRefMATH
6.
go back to reference Bouaoune L, Brunet Y, Moumen AE, Kanit T, Mazouz H (2016) Random versus periodic microstructures for elasticity of fibers reinforced composites. Compos Part B Eng 103:68–73CrossRef Bouaoune L, Brunet Y, Moumen AE, Kanit T, Mazouz H (2016) Random versus periodic microstructures for elasticity of fibers reinforced composites. Compos Part B Eng 103:68–73CrossRef
7.
go back to reference Bouyge F, Jasiuk I, Ostoja-Starzewski M (2001) Micromechanically based couple-stress model of an elastic two-phase composite. Int J Solids Struct 38(10–13):1721–1735CrossRefMATH Bouyge F, Jasiuk I, Ostoja-Starzewski M (2001) Micromechanically based couple-stress model of an elastic two-phase composite. Int J Solids Struct 38(10–13):1721–1735CrossRefMATH
8.
go back to reference Capecchi D, Ruta G, Trovalusci P (2011) Voigt and poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch Appl Mech 81(11):1573–1584CrossRefMATH Capecchi D, Ruta G, Trovalusci P (2011) Voigt and poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch Appl Mech 81(11):1573–1584CrossRefMATH
9.
10.
go back to reference De Bellis ML, Wriggers P, Hudobivnik B, Zavarise G (2018) Virtual element formulation for isotropic damage. Finite Elem Anal Des 144:38–48MathSciNetCrossRef De Bellis ML, Wriggers P, Hudobivnik B, Zavarise G (2018) Virtual element formulation for isotropic damage. Finite Elem Anal Des 144:38–48MathSciNetCrossRef
11.
go back to reference Djebara Y, Moumen AE, Kanit T, Madani S, Imad A (2016) Modeling of the effect of particles size, particles distribution and particles number on mechanical properties of polymer-clay nano-composites: numerical homogenization versus experimental results. Compos Part B Eng 86:135–142CrossRef Djebara Y, Moumen AE, Kanit T, Madani S, Imad A (2016) Modeling of the effect of particles size, particles distribution and particles number on mechanical properties of polymer-clay nano-composites: numerical homogenization versus experimental results. Compos Part B Eng 86:135–142CrossRef
12.
go back to reference Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for darcy law in random media. Proc R Soc Lond A Math Phys Eng Sci 462(2074):2949–2963MathSciNetCrossRefMATH Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for darcy law in random media. Proc R Soc Lond A Math Phys Eng Sci 462(2074):2949–2963MathSciNetCrossRefMATH
13.
go back to reference Filipovic N (2016) Modeling the behavior of smart composite materials. In: Montemor M (ed) Smart composite coatings and membranes, Woodhead publishing series in composites science and engineering. Woodhead, Sawston, pp 61–82 (Chap. 3)CrossRef Filipovic N (2016) Modeling the behavior of smart composite materials. In: Montemor M (ed) Smart composite coatings and membranes, Woodhead publishing series in composites science and engineering. Woodhead, Sawston, pp 61–82 (Chap. 3)CrossRef
15.
go back to reference Ghosh S, Kubair DV (2016) Exterior statistics based boundary conditions for representative volume elements of elastic composites. J Mech Phys Solids 95:1–24MathSciNetCrossRef Ghosh S, Kubair DV (2016) Exterior statistics based boundary conditions for representative volume elements of elastic composites. J Mech Phys Solids 95:1–24MathSciNetCrossRef
16.
go back to reference Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534CrossRef Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534CrossRef
18.
go back to reference Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefMATH Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefMATH
19.
20.
go back to reference Kubair D, Pinz M, Kollins K, Przybyla C, Ghosh S (2018) Role of exterior statistics-based boundary conditions for property-based statistically equivalent representative volume elements of polydispersed elastic composites. J Compos Mater 52(21):2919–2928CrossRef Kubair D, Pinz M, Kollins K, Przybyla C, Ghosh S (2018) Role of exterior statistics-based boundary conditions for property-based statistically equivalent representative volume elements of polydispersed elastic composites. J Compos Mater 52(21):2919–2928CrossRef
21.
go back to reference Lourenço PB, Milani G, Tralli A, Zucchini A (2007) Analysis of masonry structures: review of and recent trends in homogenization techniques. Can J Civ Eng 34(11):1443–1457CrossRef Lourenço PB, Milani G, Tralli A, Zucchini A (2007) Analysis of masonry structures: review of and recent trends in homogenization techniques. Can J Civ Eng 34(11):1443–1457CrossRef
22.
go back to reference Matsuda T, Ohno N, Tanaka H, Shimizu T (2003) Effects of fiber distribution on elastic–viscoplastic behavior of long fiber-reinforced laminates. Int J Mech Sci 45(10):1583–1598 (6th Asia-Pacific symposium on advances in engineering plasticity and its applications)CrossRefMATH Matsuda T, Ohno N, Tanaka H, Shimizu T (2003) Effects of fiber distribution on elastic–viscoplastic behavior of long fiber-reinforced laminates. Int J Mech Sci 45(10):1583–1598 (6th Asia-Pacific symposium on advances in engineering plasticity and its applications)CrossRefMATH
23.
go back to reference Ostoja-Starzewski M (1998) Random field models of heterogeneous materials. Int J Solids Struct 35(19):2429–2455CrossRefMATH Ostoja-Starzewski M (1998) Random field models of heterogeneous materials. Int J Solids Struct 35(19):2429–2455CrossRefMATH
24.
go back to reference Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21:112–132CrossRef Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21:112–132CrossRef
25.
go back to reference Ostoja-Starzewski M (2007) Microstructural randomness and scaling in mechanics of materials. CRC Press, Boca RatonCrossRefMATH Ostoja-Starzewski M (2007) Microstructural randomness and scaling in mechanics of materials. CRC Press, Boca RatonCrossRefMATH
26.
go back to reference Ranganathan SI, Ostoja-Starzewski M (2008) Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J Mech Phys Solids 56:2773–2791MathSciNetCrossRefMATH Ranganathan SI, Ostoja-Starzewski M (2008) Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J Mech Phys Solids 56:2773–2791MathSciNetCrossRefMATH
27.
go back to reference Ranganathan SI, Ostoja-Starzewski M (2009) Towards scaling laws in random polycrystals. Int J Eng Sci 47(11):1322–1330 (“Mechanics, Mathematics and Materials” a Special Issue in memory of A.J.M. Spencer FRS)MathSciNetCrossRefMATH Ranganathan SI, Ostoja-Starzewski M (2009) Towards scaling laws in random polycrystals. Int J Eng Sci 47(11):1322–1330 (“Mechanics, Mathematics and Materials” a Special Issue in memory of A.J.M. Spencer FRS)MathSciNetCrossRefMATH
28.
go back to reference Reccia E, De Bellis ML, Trovalusci P, Masiani R (2018) Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos Part B Eng 136:39–45CrossRef Reccia E, De Bellis ML, Trovalusci P, Masiani R (2018) Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos Part B Eng 136:39–45CrossRef
29.
go back to reference Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. C R Mec 333(2):187–195CrossRefMATH Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. C R Mec 333(2):187–195CrossRefMATH
30.
go back to reference Sadowski T, Marsavina L (2011) Multiscale modelling of two-phase ceramic matrix composites. Comput Mater Sci 50(4):1336–1346CrossRef Sadowski T, Marsavina L (2011) Multiscale modelling of two-phase ceramic matrix composites. Comput Mater Sci 50(4):1336–1346CrossRef
31.
go back to reference Sadowski T, Pankowski B (2016) Numerical modelling of two-phase ceramic composite response under uniaxial loading. Compos Struct 143:388–394CrossRef Sadowski T, Pankowski B (2016) Numerical modelling of two-phase ceramic composite response under uniaxial loading. Compos Struct 143:388–394CrossRef
32.
go back to reference Salmi M, Auslender F, Bornert M, Fogli M (2012) Apparent and effective mechanical properties of linear matrix-inclusion random composites: improved bounds for the effective behavior. Int J Solids Struct 49(10):1195–1211CrossRef Salmi M, Auslender F, Bornert M, Fogli M (2012) Apparent and effective mechanical properties of linear matrix-inclusion random composites: improved bounds for the effective behavior. Int J Solids Struct 49(10):1195–1211CrossRef
33.
go back to reference Sansalone V, Trovalusci P, Cleri F (2006) Multiscale modelling of materials by a multifield approach: microscopic stress and strain distribution in fiber-matrix composites. Acta Mater 54(13):3485–3492CrossRef Sansalone V, Trovalusci P, Cleri F (2006) Multiscale modelling of materials by a multifield approach: microscopic stress and strain distribution in fiber-matrix composites. Acta Mater 54(13):3485–3492CrossRef
34.
go back to reference Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom 22(1):21–74 (16th ACM symposium on computational geometry)MathSciNetCrossRefMATH Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom 22(1):21–74 (16th ACM symposium on computational geometry)MathSciNetCrossRefMATH
35.
go back to reference Stefanou I, Sulem J, Vardoulakis I (2008) Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech 3:71–83CrossRef Stefanou I, Sulem J, Vardoulakis I (2008) Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech 3:71–83CrossRef
36.
go back to reference Trovalusci P, Augusti G (1998) A continuum model with microstructure for materials with flaws and inclusions. J Phys IV Pr8:383–390 Trovalusci P, Augusti G (1998) A continuum model with microstructure for materials with flaws and inclusions. J Phys IV Pr8:383–390
37.
go back to reference Trovalusci P, De Bellis ML, Ostoja-Starzewski M, Murrali A (2014) Particulate random composites homogenized as micropolar materials. Meccanica 49(11):2719–2727MathSciNetCrossRef Trovalusci P, De Bellis ML, Ostoja-Starzewski M, Murrali A (2014) Particulate random composites homogenized as micropolar materials. Meccanica 49(11):2719–2727MathSciNetCrossRef
38.
go back to reference Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2015) Scale-dependent homogenization of random composites as micropolar continua. Eur J Mech A/Solids 49:396–407CrossRef Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2015) Scale-dependent homogenization of random composites as micropolar continua. Eur J Mech A/Solids 49:396–407CrossRef
39.
go back to reference Trovalusci P, De Bellis ML, Ostoja-Starzewski M (2016) A statistically-based homogenization approach for particle random composites as micropolar continua. Adv Struct Mater 42:425–441MathSciNetCrossRef Trovalusci P, De Bellis ML, Ostoja-Starzewski M (2016) A statistically-based homogenization approach for particle random composites as micropolar continua. Adv Struct Mater 42:425–441MathSciNetCrossRef
40.
go back to reference Trovalusci P, De Bellis ML, Masiani R (2017) A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos Part B Eng 128:164–173CrossRef Trovalusci P, De Bellis ML, Masiani R (2017) A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos Part B Eng 128:164–173CrossRef
42.
go back to reference Wriggers P, Reddy BD, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253–268MathSciNetCrossRefMATH Wriggers P, Reddy BD, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253–268MathSciNetCrossRefMATH
43.
go back to reference Zeman J, Sejnoha M (2007) From random microstructures to representative volume elements. Model Simul Mater Sci Eng 15(4):S325–S335CrossRef Zeman J, Sejnoha M (2007) From random microstructures to representative volume elements. Model Simul Mater Sci Eng 15(4):S325–S335CrossRef
Metadata
Title
Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method
Authors
M. Pingaro
E. Reccia
P. Trovalusci
R. Masiani
Publication date
02-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1665-7

Other articles of this Issue 1/2019

Computational Mechanics 1/2019 Go to the issue