Skip to main content
Top
Published in:

27-07-2023

Fault Tolerance in Electric Vehicles Using Deep Learning for Intelligent Transportation Systems

Authors: Huanxue Liu, Fengqin Ke, Zhenzhong Zhang, Yanan Gao, Quanyu Zhang

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intelligent transportation systems (ITS) such as hybrid electric vehicles make use of sensing technologies to improve mobility, safety and efficiency. Automated manual transmission (AMT) is a mechatronic device consisting of Internet of Things (IoT)-enabled sensors and actuators responsible for automatic gear shifting in hybrid electric vehicles. Any failure in these sensors or actuators can affect the normal operation of vehicles. Therefore, this study aims to discuss the characteristics of AMT when it breaks down and its impact on the whole hybrid electric vehicle system. Firstly, this paper briefly introduces the relevant overview of hybrid electric vehicles and AMT. Next, analytical redundancy analysis is used to find out the possible faults of each part of AMT and the causes of each fault. The normal and faulty signals are then passed to a reduced depth kernel extreme learning machine (RDK-ELM) algorithm, which combines the deep learning network structure with the kernel-based selection of support vectors from the training samples. The RDK-ELM is a fault diagnosis algorithm that classifies the normal and faulty signals, which represent whether the sensor is faulty or not. Simulation results show that the algorithm has high classification accuracy of 97.12% and it requires less time for training the model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
7.
go back to reference Wei S, Ma N, Su J, Deng W, “A Motor Fault Detection Method Based on Optimized Extreme Learning Machine (2021),” in Advances in Artificial Systems for Medicine and Education IV, Z. Hu, S. Petoukhov, and M. He, Eds., in Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, pp. 315–324. https://doi.org/10.1007/978-3-030-67133-4_29 Wei S, Ma N, Su J, Deng W, “A Motor Fault Detection Method Based on Optimized Extreme Learning Machine (2021),” in Advances in Artificial Systems for Medicine and Education IV, Z. Hu, S. Petoukhov, and M. He, Eds., in Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, pp. 315–324. https://​doi.​org/​10.​1007/​978-3-030-67133-4_​29
8.
15.
19.
go back to reference Usman M, Jan MA, Jolfaei A (2020) SPEED: a deep learning assisted privacy-preserved framework for intelligent transportation systems. IEEE Trans Intell Transp Syst 22(7):4376–4384CrossRef Usman M, Jan MA, Jolfaei A (2020) SPEED: a deep learning assisted privacy-preserved framework for intelligent transportation systems. IEEE Trans Intell Transp Syst 22(7):4376–4384CrossRef
Metadata
Title
Fault Tolerance in Electric Vehicles Using Deep Learning for Intelligent Transportation Systems
Authors
Huanxue Liu
Fengqin Ke
Zhenzhong Zhang
Yanan Gao
Quanyu Zhang
Publication date
27-07-2023
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02168-w