Skip to main content
Top

2011 | OriginalPaper | Chapter

Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors

Authors : Matthias U. Lutz, Kamil Lipert, Yulia Krupskaya, Stefan Bahr, Anja Wolter, Ahmed A. El-Gendy, Silke Hampel, Albrecht Leonhardt, Arthur Taylor, Kai Krämer, Bernd Büchner, Rüdiger Klingeler

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss the prospects of applying the magnetic properties of magnetically functionalised carbon nanotubes to biomedical applications. The primary applications are use as a contactless local heating agent, as a standalone thermoablation treatment or in concert with remotely released anti-cancer drugs. Targeted heat treatment is an effective cancer treatment, as tumour tissue has a reduced heat tolerance. To understand the heating process in an applied alternating current (AC) magnetic field the basics of the ferro- and superparamagnetic heating mechanisms are described and brought into context with the material properties. The performance of various materials is compared with respect to heat output, and prospect of additional functionalisation. The actual heating output in AC magnetic fields is studied and discussed in this chapter. Hall magnetometry and Magnetic Force Microscopy are employed to study the magnetic properties of individual nano-ferromagnets, e.g. magnetisation reversal behaviour and domain configuration. NMR studies show that a non-invasive temperature control by virtue of a carbon-wrapped nanoscaled thermometer is feasible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Unless otherwise specified, we always use multiwalled carbon nanotubes (MWCNT) in our experiments.
 
Literature
1.
go back to reference Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mat. 201, 413–419 (1999)CrossRef Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mat. 201, 413–419 (1999)CrossRef
2.
go back to reference Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldöfner, N., Scholz, R., Koch, M., Lein, M., Jung, K., Loening, S.A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 283, 64 (2005) Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldöfner, N., Scholz, R., Koch, M., Lein, M., Jung, K., Loening, S.A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 283, 64 (2005)
3.
go back to reference Matsuoka, F., Shinkai, M., Honda, H., Kubo, T., Sugita, T., Kobayashi, T.: Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn. Res. Technol. 2, 3 (2004)CrossRef Matsuoka, F., Shinkai, M., Honda, H., Kubo, T., Sugita, T., Kobayashi, T.: Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn. Res. Technol. 2, 3 (2004)CrossRef
4.
go back to reference Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., Loening, S.A.: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int. J. Hyperth. 23, 315–323 (2007)CrossRef Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., Loening, S.A.: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int. J. Hyperth. 23, 315–323 (2007)CrossRef
5.
go back to reference Dale, L.H.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482 (2005)CrossRef Dale, L.H.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482 (2005)CrossRef
6.
go back to reference Klingeler, R., Hampel, S., Büchner, B.: Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperth. 24, 496–505 (2008)CrossRef Klingeler, R., Hampel, S., Büchner, B.: Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperth. 24, 496–505 (2008)CrossRef
7.
go back to reference Hilder, T.A., Hill, J.M.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)CrossRef Hilder, T.A., Hill, J.M.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)CrossRef
8.
go back to reference Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.-P., Gennaro, R., Prato, M., Bianco, A.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358 (2005)CrossRef Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.-P., Gennaro, R., Prato, M., Bianco, A.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358 (2005)CrossRef
9.
go back to reference Hampel, S., Kunze, D., Haase, D., Rauschenbach, M., Kraemer, K., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Buechner, B.: Carbon nanotubes filled with a chemotherapeutic agent—a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)CrossRef Hampel, S., Kunze, D., Haase, D., Rauschenbach, M., Kraemer, K., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Buechner, B.: Carbon nanotubes filled with a chemotherapeutic agent—a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)CrossRef
10.
go back to reference Leonhardt, A., Mönch, I., Meye, A., Hampel, S., Büchner, B.: Synthesis of ferromagnetic filled carbon nanotubes and their biomedical application. Adv. Sci. Technol. 49, S74–S78 (2006)CrossRef Leonhardt, A., Mönch, I., Meye, A., Hampel, S., Büchner, B.: Synthesis of ferromagnetic filled carbon nanotubes and their biomedical application. Adv. Sci. Technol. 49, S74–S78 (2006)CrossRef
11.
go back to reference Kent, A.D., von Molnar, S., Gider, S., Awschalom, D.D.: Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited) J. Appl. Phys. 76, 6656 (1994)CrossRef Kent, A.D., von Molnar, S., Gider, S., Awschalom, D.D.: Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited)  J. Appl. Phys. 76, 6656 (1994)CrossRef
12.
go back to reference Gider, S., Shi, J., Awschalom, D., Hopkins, P., Campman, K., Gossard, A., Kent, A., von Molnar, S.: Imaging and magnetometry of switching in nanometer-scale iron particles. Appl. Phys. Lett. 69, 3269 (1996)CrossRef Gider, S., Shi, J., Awschalom, D., Hopkins, P., Campman, K., Gossard, A., Kent, A., von Molnar, S.: Imaging and magnetometry of switching in nanometer-scale iron particles. Appl. Phys. Lett. 69, 3269 (1996)CrossRef
13.
go back to reference Geim, A.K., Dubonos, S.V., Lok, J.G.S., Grigorieva, I.V., Maan, J.C., Hansen, L.T., Lindelof, P.E.: Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379 (1997)CrossRef Geim, A.K., Dubonos, S.V., Lok, J.G.S., Grigorieva, I.V., Maan, J.C., Hansen, L.T., Lindelof, P.E.: Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379 (1997)CrossRef
14.
go back to reference Li, Y., Xiong, P., von Molnar, S., Wirth, S., Ohno, Y., Ohno, H.: Hall magnetometry on a single iron nanoparticle. Appl. Phys. Lett. 80, 4644 (2002)CrossRef Li, Y., Xiong, P., von Molnar, S., Wirth, S., Ohno, Y., Ohno, H.: Hall magnetometry on a single iron nanoparticle. Appl. Phys. Lett. 80, 4644 (2002)CrossRef
15.
go back to reference Stoner, E.C., Wohlfarth, E.P.: A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 599 (1948)MATH Stoner, E.C., Wohlfarth, E.P.: A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 599 (1948)MATH
16.
17.
go back to reference Sellmyer, D.J., Zheng, M., Skomski, R.: Magnetism of Fe, Co and Ni nanowires in selfassembled arrays. J. Phys. Condens. Matter 13, R433 (2001)CrossRef Sellmyer, D.J., Zheng, M., Skomski, R.: Magnetism of Fe, Co and Ni nanowires in selfassembled arrays. J. Phys. Condens. Matter 13, R433 (2001)CrossRef
18.
19.
go back to reference Meier, J., Doudin, B., Ansermet, J.: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010 (1996)CrossRef Meier, J., Doudin, B., Ansermet, J.: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010 (1996)CrossRef
20.
go back to reference Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., Sellmyer, D.J.: Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B. 65, 134426 (2002)CrossRef Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., Sellmyer, D.J.: Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B. 65, 134426 (2002)CrossRef
21.
go back to reference Martin, Y., Wickramasinghe, K.: Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)CrossRef Martin, Y., Wickramasinghe, K.: Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)CrossRef
22.
go back to reference Göddenhenrich, T., Hartmann, U., Anders, M., Heiden, C.: Investigation of Bloch wall fine structures by magnetic force microscopy. J. Microsc. 152, 527–536 (1988)CrossRef Göddenhenrich, T., Hartmann, U., Anders, M., Heiden, C.: Investigation of Bloch wall fine structures by magnetic force microscopy. J. Microsc. 152, 527–536 (1988)CrossRef
23.
go back to reference Gomez, R.D., Luu, T.V., Pak, A.O., Kirk, K.J., Chapman, J.N.:Domain configurations of nanostructured Permalloy elements. J. Appl. Phys. 85, 6163 (1999)CrossRef Gomez, R.D., Luu, T.V., Pak, A.O., Kirk, K.J., Chapman, J.N.:Domain configurations of nanostructured Permalloy elements. J. Appl. Phys. 85, 6163 (1999)CrossRef
24.
go back to reference O’Barr, R., Schultz, S.: Switching field studies of individual single domain Ni columns. J. Appl. Phys. 81, 5458 (1997)CrossRef O’Barr, R., Schultz, S.: Switching field studies of individual single domain Ni columns. J. Appl. Phys. 81, 5458 (1997)CrossRef
25.
go back to reference Moser, A., et al.: Observation of Single Vortices Condensed into a Vortex-Glass Phase by Magnetic Force Microscopy. Phys. Rev. Lett. 74, 1847 (1995)CrossRef Moser, A., et al.: Observation of Single Vortices Condensed into a Vortex-Glass Phase by Magnetic Force Microscopy. Phys. Rev. Lett. 74, 1847 (1995)CrossRef
26.
go back to reference Müller, C., Elefant, D., Leonhardt, A., Büchner, B.: Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays. J. Appl. Phys. 103, 034302 (2008)CrossRef Müller, C., Elefant, D., Leonhardt, A., Büchner, B.: Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays. J. Appl. Phys. 103, 034302 (2008)CrossRef
27.
go back to reference Lutz, M.U., Weissker, U., Wolny, F., Müller, C., Löffler, M., Mühl, T., Leonhardt, A., Büchner, B., Klingeler, R.: Magnetic properties of α-Fe and Fe3C nanowires. JPCS 200, 072062 (2010) Lutz, M.U., Weissker, U., Wolny, F., Müller, C., Löffler, M., Mühl, T., Leonhardt, A., Büchner, B., Klingeler, R.: Magnetic properties of α-Fe and Fe3C nanowires. JPCS 200, 072062 (2010)
28.
go back to reference Peigney, A., Laurent, C., Dobigeon, F., Rousset, A.: Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res. 12, 613 (1997)CrossRef Peigney, A., Laurent, C., Dobigeon, F., Rousset, A.: Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res. 12, 613 (1997)CrossRef
29.
go back to reference Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471 (1996)CrossRef Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471 (1996)CrossRef
30.
go back to reference Hafner, J., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 (1998)CrossRef Hafner, J., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 (1998)CrossRef
31.
go back to reference Nagaraju, N., Fonseca, A., Konya, Z., Nagy, J.B.: Alumina and silica supported metal catalysts for the production of carbonnanotubes. Mol. Catal. A. Chem. 181, 57 (2002)CrossRef Nagaraju, N., Fonseca, A., Konya, Z., Nagy, J.B.: Alumina and silica supported metal catalysts for the production of carbonnanotubes. Mol. Catal. A. Chem. 181, 57 (2002)CrossRef
32.
go back to reference Lee, S.Y., Yamada, M., Miyake, M.: Synthesis of Carbon Nanotubes and Carbon Nanofilaments over Palladium Supported Catalysts. Sci. Technol. Adv. Mater. 6, 420 (2005)CrossRef Lee, S.Y., Yamada, M., Miyake, M.: Synthesis of Carbon Nanotubes and Carbon Nanofilaments over Palladium Supported Catalysts. Sci. Technol. Adv. Mater. 6, 420 (2005)CrossRef
33.
go back to reference Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H.: Large Scale CVD Synthesis of Single- Walled Carbon Nanotubes. Phys. Chem. B 103, 6484 (1999)CrossRef Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H.: Large Scale CVD Synthesis of Single- Walled Carbon Nanotubes. Phys. Chem. B 103, 6484 (1999)CrossRef
34.
go back to reference Mabudafhasi, M.L., Bodkin, R., Nicolaides, C.P., Liu, X.Y., Witcomb, M.J., Coville, N.J.: The ruthenium catalysed synthesis of carbon nanostructures. Carbon 40, 2737 (2002)CrossRef Mabudafhasi, M.L., Bodkin, R., Nicolaides, C.P., Liu, X.Y., Witcomb, M.J., Coville, N.J.: The ruthenium catalysed synthesis of carbon nanostructures. Carbon 40, 2737 (2002)CrossRef
35.
go back to reference Lipert, K., Kretzschmar, F., Ritschel, M., Leonhardt, A., Klingeler, R., Büchner, B.: Nonmagnetic carbon nanotubes. J. Appl. Phys. 105, 063906 (2009)CrossRef Lipert, K., Kretzschmar, F., Ritschel, M., Leonhardt, A., Klingeler, R., Büchner, B.: Nonmagnetic carbon nanotubes. J. Appl. Phys. 105, 063906 (2009)CrossRef
36.
go back to reference Ritschel, M., Leonhardt, A., Elefant, D., Oswald, S., Büchner, B.: Rhenium-Catalyzed Growth Carbon Nanotubes. J. Phys. Chem. C 111, 8414 (2007)CrossRef Ritschel, M., Leonhardt, A., Elefant, D., Oswald, S., Büchner, B.: Rhenium-Catalyzed Growth Carbon Nanotubes. J. Phys. Chem. C 111, 8414 (2007)CrossRef
37.
go back to reference Heremans, J., Olk, C.H., Morelli, D.T.: Magnetic susceptibility of carbon structures. Phys. Rev. B 49, 15122 (1994)CrossRef Heremans, J., Olk, C.H., Morelli, D.T.: Magnetic susceptibility of carbon structures. Phys. Rev. B 49, 15122 (1994)CrossRef
38.
go back to reference Tsui, F., Jin, L., Zhou, O.: Anisotropic magnetic susceptibility of multiwalled carbon nanotubes. Appl. Phys. Lett. 76, 1452 (2000)CrossRef Tsui, F., Jin, L., Zhou, O.: Anisotropic magnetic susceptibility of multiwalled carbon nanotubes. Appl. Phys. Lett. 76, 1452 (2000)CrossRef
39.
go back to reference Byszewski, P., Baran, M.: Magnetic Susceptibility of Carbon Nanotubes. Europhys. Lett. 31, 363 (1995)CrossRef Byszewski, P., Baran, M.: Magnetic Susceptibility of Carbon Nanotubes. Europhys. Lett. 31, 363 (1995)CrossRef
40.
go back to reference Leonhardt, A., Ritschel, M., Elefant, D., Mattern, N., Biedermann, K., Hampel, S., Müller, Ch., Gemming, T., Büchner, B.: Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J. Appl. Phys. 98, 074315 (2005)CrossRef Leonhardt, A., Ritschel, M., Elefant, D., Mattern, N., Biedermann, K., Hampel, S., Müller, Ch., Gemming, T., Büchner, B.: Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J. Appl. Phys. 98, 074315 (2005)CrossRef
42.
go back to reference Hütten, A., Sudfeld, D., Ennena, I., Reiss, G., Wojczykowski, K., Jutzi, P.: Ferromagnetic FeCo nanoparticles for biotechnology. J. Magn. Magn. Mater. 293, 93 (2003)CrossRef Hütten, A., Sudfeld, D., Ennena, I., Reiss, G., Wojczykowski, K., Jutzi, P.: Ferromagnetic FeCo nanoparticles for biotechnology. J. Magn. Magn. Mater. 293, 93 (2003)CrossRef
43.
go back to reference Neel, L.: Compt. Rend. (Paris) 224, 1488 (1947) Neel, L.: Compt. Rend. (Paris) 224, 1488 (1947)
44.
go back to reference O’Handley, R.C.: Modern magnetic materials. John Wiley and Sons, New York (2000) O’Handley, R.C.: Modern magnetic materials. John Wiley and Sons, New York (2000)
45.
go back to reference Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258 (1992)CrossRef Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258 (1992)CrossRef
46.
go back to reference Kersten, M.: Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilität. Z. Phys. 44, 63 (1943) Kersten, M.: Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilität. Z. Phys. 44, 63 (1943)
47.
go back to reference Hampel, S., Leonhardt, A., Selbmann, D., Biedermann, K., Elefant, D., Mueller, C., Gemming, T., Buechner, B.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44, 2316 (2006)CrossRef Hampel, S., Leonhardt, A., Selbmann, D., Biedermann, K., Elefant, D., Mueller, C., Gemming, T., Buechner, B.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44, 2316 (2006)CrossRef
48.
go back to reference Krupskaya, Y., Mahn, C., Parameswaran, A., Taylor, A., Krämer, K., Hampel, S., Leonhardt, A., Ritschel, M., Büchner, B., Klingeler, R.: Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. JMMM 321(24), 4067–4071 (2009)CrossRef Krupskaya, Y., Mahn, C., Parameswaran, A., Taylor, A., Krämer, K., Hampel, S., Leonhardt, A., Ritschel, M., Büchner, B., Klingeler, R.: Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. JMMM 321(24), 4067–4071 (2009)CrossRef
49.
go back to reference Heister, E., Neves, V., Tîlmaciu, C., Lipert, K., Sanz Beltrán, V., Coley, H., Silva, S.R.P., McFadden, J.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9), 2152–2160 (2009)CrossRef Heister, E., Neves, V., Tîlmaciu, C., Lipert, K., Sanz Beltrán, V., Coley, H., Silva, S.R.P., McFadden, J.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9), 2152–2160 (2009)CrossRef
50.
go back to reference Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S., Richterd, U.: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 270, 345–357 (2004)CrossRef Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S., Richterd, U.: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 270, 345–357 (2004)CrossRef
51.
go back to reference Rosensweig, R.E., Magn, J.: Heating magnetic fluid with alternating magnetic field. Magn. Mater. 252, 370–374 (2002)CrossRef Rosensweig, R.E., Magn, J.: Heating magnetic fluid with alternating magnetic field. Magn. Mater. 252, 370–374 (2002)CrossRef
52.
go back to reference Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)CrossRef Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)CrossRef
53.
go back to reference Farle, M.: Magnetism goes nano, C4, Forschungszentrum Juelich (2005) Farle, M.: Magnetism goes nano, C4, Forschungszentrum Juelich (2005)
54.
go back to reference Kumar, C.S.S.R.: Nanomaterials for cancer therapy. Wiley-VCH, pp 291–296 (2006) Kumar, C.S.S.R.: Nanomaterials for cancer therapy. Wiley-VCH, pp 291–296 (2006)
55.
go back to reference Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)CrossRef Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)CrossRef
56.
go back to reference Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine 3(3), 321–327 (2008)CrossRef Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine 3(3), 321–327 (2008)CrossRef
57.
go back to reference Haase, D., Hampel, S., Leonhardt, A., Thomas, J., Mattern, N., Büchner, B.: Facile onestep- synthesis of carbon wrapped copper nanowires by thermal decomposition of Copper(II)– acetylacetonate. Surf. Coat. Technol. 201, 9184–9188 (2007)CrossRef Haase, D., Hampel, S., Leonhardt, A., Thomas, J., Mattern, N., Büchner, B.: Facile onestep- synthesis of carbon wrapped copper nanowires by thermal decomposition of Copper(II)– acetylacetonate. Surf. Coat. Technol. 201, 9184–9188 (2007)CrossRef
58.
go back to reference Weissker, U., Löffler, M., Wolny, F., Lutz, M.U., Scheerbaum, N., Klingeler, R., Gemming, T., Mühl, T., Leonhardt, A., Büchner, B.: Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J. Appl. Phys. 106, 054909 (2009)CrossRef Weissker, U., Löffler, M., Wolny, F., Lutz, M.U., Scheerbaum, N., Klingeler, R., Gemming, T., Mühl, T., Leonhardt, A., Büchner, B.: Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J. Appl. Phys. 106, 054909 (2009)CrossRef
59.
go back to reference Grimault, S., Lucas, T., Quellec, S., Mariette, F.: Quantitative measurement of temperature by proton resonance frequency shift at low field: a general method to correct non-linear spatial and temporal phase deformations. J. Magn. Res. 170, 79–87 (2004)CrossRef Grimault, S., Lucas, T., Quellec, S., Mariette, F.: Quantitative measurement of temperature by proton resonance frequency shift at low field: a general method to correct non-linear spatial and temporal phase deformations. J. Magn. Res. 170, 79–87 (2004)CrossRef
60.
go back to reference Ye, X., Ruan, R., Chen, P., Chang, K., Ning, K., Taub, I., Doona, C.: Accurate and fast temperature mapping during ohmic heating using proton resonance frequency shift MRI thermometry. J. Food. Eng. 59, 143–150 (2003)CrossRef Ye, X., Ruan, R., Chen, P., Chang, K., Ning, K., Taub, I., Doona, C.: Accurate and fast temperature mapping during ohmic heating using proton resonance frequency shift MRI thermometry. J. Food. Eng. 59, 143–150 (2003)CrossRef
61.
go back to reference Kahn, T., Harth, T., Kiwit, J.C.W., Schwarzmaier, H.J., Wald, C., Mödder, U.: In vivo MRI thermometry using a phase-sensitive sequence: preliminary experience during MRI-guided laser-induced interstitial thermotherapy of brain tumors. J. Magn. Reson. Imaging 8, 160–164 (1998)CrossRef Kahn, T., Harth, T., Kiwit, J.C.W., Schwarzmaier, H.J., Wald, C., Mödder, U.: In vivo MRI thermometry using a phase-sensitive sequence: preliminary experience during MRI-guided laser-induced interstitial thermotherapy of brain tumors. J. Magn. Reson. Imaging 8, 160–164 (1998)CrossRef
62.
go back to reference Smith, N.B., Merrilees, N.K., Hynynen, K., Dahleh, M.: Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease. Int. J. Hyperth. 17, 271–282 (2001)CrossRef Smith, N.B., Merrilees, N.K., Hynynen, K., Dahleh, M.: Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease. Int. J. Hyperth. 17, 271–282 (2001)CrossRef
63.
go back to reference Popescu, V.: Senzori de temperatură pe bază de filme de PbS nanostructurate. Rev. Chim. 55, 983–985 (2004) Popescu, V.: Senzori de temperatură pe bază de filme de PbS nanostructurate. Rev. Chim. 55, 983–985 (2004)
64.
go back to reference Tan, C.M., Jia, J., Yu, W.: Temperature dependence of the field emission of multiwalled carbon nanotubes. Appl. Phys. Lett. 86, 263104 (2005)CrossRef Tan, C.M., Jia, J., Yu, W.: Temperature dependence of the field emission of multiwalled carbon nanotubes. Appl. Phys. Lett. 86, 263104 (2005)CrossRef
65.
66.
go back to reference Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)CrossRef Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)CrossRef
67.
go back to reference Klostranec, J.M., Chan, W.C.W.: Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 18, 1953–1964 (2006)CrossRef Klostranec, J.M., Chan, W.C.W.: Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 18, 1953–1964 (2006)CrossRef
68.
go back to reference Narberhauser, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)CrossRef Narberhauser, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)CrossRef
69.
go back to reference Lee, J., Govoroy, A.O., Kotov, N.A.: Nanoparticle assemblies with molecular springs: nanoscale thermometer. Angew. Chem. Inter. Ed. 117, 7605–7608 (2005)CrossRef Lee, J., Govoroy, A.O., Kotov, N.A.: Nanoparticle assemblies with molecular springs: nanoscale thermometer. Angew. Chem. Inter. Ed. 117, 7605–7608 (2005)CrossRef
70.
go back to reference Gao, Y., Bando, Y., Liu, Z., Golberg, D., Nakanishi, H.: Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915 (2003)CrossRef Gao, Y., Bando, Y., Liu, Z., Golberg, D., Nakanishi, H.: Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915 (2003)CrossRef
71.
go back to reference Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environment. Nanomedicine 3, 321–327 (2008)CrossRef Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environment. Nanomedicine 3, 321–327 (2008)CrossRef
72.
go back to reference Becker, K.D.: Temperature dependence of NMR chemical shifts in cuprous halides. J. Chem. Phys. 68, 3785–3793 (1978)CrossRef Becker, K.D.: Temperature dependence of NMR chemical shifts in cuprous halides. J. Chem. Phys. 68, 3785–3793 (1978)CrossRef
73.
go back to reference Wolter, A.U.B., Klingeler, R., Büchner, B.: Thermometry on the nanometre-scale for biomedical applications using NMR spectroscopy. J. Biomed. Nanosci. Nanotechnol. (2010) (in print) Wolter, A.U.B., Klingeler, R., Büchner, B.: Thermometry on the nanometre-scale for biomedical applications using NMR spectroscopy. J. Biomed. Nanosci. Nanotechnol. (2010) (in print)
74.
go back to reference Abragam, A. (ed.): Principles of Nuclear Magnetism. Oxford University Press (1961) Abragam, A. (ed.): Principles of Nuclear Magnetism. Oxford University Press (1961)
75.
go back to reference Andrew, E.R., Hinshaw, W.S., Tiffen, R.S.: Nuclear spin–lattice relaxation in solid cuprous halides. J. Phys. C Solid. State. Phys. 6, 2217–2222 (1973)CrossRef Andrew, E.R., Hinshaw, W.S., Tiffen, R.S.: Nuclear spin–lattice relaxation in solid cuprous halides. J. Phys. C Solid. State. Phys. 6, 2217–2222 (1973)CrossRef
Metadata
Title
Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors
Authors
Matthias U. Lutz
Kamil Lipert
Yulia Krupskaya
Stefan Bahr
Anja Wolter
Ahmed A. El-Gendy
Silke Hampel
Albrecht Leonhardt
Arthur Taylor
Kai Krämer
Bernd Büchner
Rüdiger Klingeler
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_6