Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

Feature clustering and feature discretization assisting gene selection for molecular classification using fuzzy c-means and expectation–maximization algorithm

Journal:
The Journal of Supercomputing > Issue 6/2021
Author:
Hung-Yi Lin
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, a novel gene selection benefiting from feature clustering and feature discretization is developed. In large numbers of genes, unsupervised fuzzy clustering algorithm facilitates the analysis of both similarities and dissimilarities. The supervised process, adopting information gain and statistical Chi-square test, is applied to approve the relevant gene clusters. Then, expectation–maximization algorithm discretizes the candidate genes and helps to recognize distinguishability. In our previously proposed selection criterion, we finalized gene selection and generated the gene subsets for molecular classification. For high-dimensional datasets congested with erroneous or ambiguous information, the current scheme is particularly suitable in its own right. The efficiency and effectiveness are verified by our experimental results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits