Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-05-2018 | Issue 3/2019

Neural Processing Letters 3/2019

Feature Extraction and Classification of Hand Movements Surface Electromyogram Signals Based on Multi-method Integration

Journal:
Neural Processing Letters > Issue 3/2019
Authors:
Li Ge, Li-Juan Ge, Jing Hu

Abstract

On the basis of analysing the characteristics of hand movement surface electrocardiogram electromyogram (sEMG) signals, we propose a feature extraction and classification method for hand movement sEMG signals based on a multi-method integration combining the wavelet, fractal and statistics methods. To start, the hand movement sEMG signals are de-noised by using the wavelet transform, the de-noised and reconstructed signals are decomposed, and the average high frequency coefficients in each scale space are calculated to constitute the feature vectors as the first part of the hand movement sEMG signals classification features. Next, according to the characteristics of hand movement sEMG signals and the classification needs, we analyse the multi-fractal spectrum of the de-noised and reconstructed signals at multiple scales and extract the relevant parameters of multi-fractal spectrum as the second part of the hand movement sEMG signals classification features. Then, according to the characteristics of hand movement sEMG signals, we extract the relevant statistical characteristics of sEMG signals as the third part of hand movement sEMG signals classification features. According to the extracted features, we use the Least Square Support Vector Machine and the Backpropagation neural network as classifiers to individually classify and combine the characteristics of hand movement sEMG signals and the experimental results. The final classification features are identified to accomplish the classification of hand movement sEMG signals. Finally, the advantages of the proposed method are illustrated by comparative analysis from multiple perspectives.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Neural Processing Letters 3/2019 Go to the issue