Skip to main content
Top
Published in:

28-09-2022

Features of Steel Structure Formation in Areas of High-Speed Laser Hardening from Liquid State

Authors: G. I. Brover, E. E. Shcherbakova

Published in: Metallurgist | Issue 5-6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Features of structure organization during pulsed laser melting of steel surface layers are studied. Based on analyzing crystallization process rate kinetics it is established that temperature gradients and thermal stresses developing in irradiated metal areas during melting contribute to convective mixing of liquid at a rate of 103 cm/sec, and also, despite an extremely short laser pulse time (10–3 sec) they contribute to partial or complete dissolution of the original structure carbides. As a result, the chemical composition of melted metal changes, martensitic transformation points are lowered and a significant amount of textured metastable residual austenite (40–60%) is fixed that has a very fine structure (dendrite cross-section 5–9 nm). This has a favorable effect on irradiated material surface layer quality and mechanical properties. It is established by experiment that with a change in laser processing regime it becomes possible to achieve a wide range of cooling rates during crystallization, i.e., to control the degree of carbide dissolution, structural characteristics, and melted metal area properties. It is demonstrated that in order to achieve the maximum possible degree of hardening for irradiated steels having different chemical composition, it is necessary to dissolve 30–60% of carbides in the initial metal. As a result of this after laser irradiation material heat resistance increases by 50–100°C, and wear resistance increases by a factor of 2–4.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. M. Gureev and S. V. Yamshchikov, Bases of Laser Physics and Material laser Treatment [in Russian], Izd. SGU, Samara (2001). D. M. Gureev and S. V. Yamshchikov, Bases of Laser Physics and Material laser Treatment [in Russian], Izd. SGU, Samara (2001).
2.
go back to reference A. G. Grigor’yants, I. N. Shiganov, and A. I. Misyurov, Laser Treatment production processes [in Russian], Izd. MGTU im Baumana, Moscow (2006). A. G. Grigor’yants, I. N. Shiganov, and A. I. Misyurov, Laser Treatment production processes [in Russian], Izd. MGTU im Baumana, Moscow (2006).
3.
go back to reference Yu. D. Klebanov and S. N. Grigor’ev, Physical Bases of using Concentrated Energy Flows in Material Treatment Technology [in Russian] Izd. MGTU Stankin, Moscow (2005). Yu. D. Klebanov and S. N. Grigor’ev, Physical Bases of using Concentrated Energy Flows in Material Treatment Technology [in Russian] Izd. MGTU Stankin, Moscow (2005).
4.
go back to reference X. Li and Y. Guan, “Theoretical fundamentals of short pulse laser–metal interaction: A review,” Nanotechnology and Precision Engineering, No. 3, 105–125 (2020). X. Li and Y. Guan, “Theoretical fundamentals of short pulse laser–metal interaction: A review,” Nanotechnology and Precision Engineering, No. 3, 105–125 (2020).
5.
go back to reference S. Roy, J. Zhao, P. Shrotriya, and S. Sundararajan, “Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel,” Tribology Inter., 112, 94–102 (2017).CrossRef S. Roy, J. Zhao, P. Shrotriya, and S. Sundararajan, “Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel,” Tribology Inter., 112, 94–102 (2017).CrossRef
6.
go back to reference A. Gabdrakhmanov, I. Galiakbarov, and I. Gaisin, “Increasing efficiency of the laser action to materials,” Materials Today: Proceedings, 19, Part 5, 1965–1967 (2019). A. Gabdrakhmanov, I. Galiakbarov, and I. Gaisin, “Increasing efficiency of the laser action to materials,” Materials Today: Proceedings, 19, Part 5, 1965–1967 (2019).
7.
go back to reference S. Sihn, L. B. Childersac, C. T. Waltersad, M. S. Forte, A. K. Roy, and P. Vernon, “Computational and experimental study on laser heating of a Ni-based metal alloy,” Intern. J. of Heat and Mass Transfer, 102, 1034–1043 (2016).CrossRef S. Sihn, L. B. Childersac, C. T. Waltersad, M. S. Forte, A. K. Roy, and P. Vernon, “Computational and experimental study on laser heating of a Ni-based metal alloy,” Intern. J. of Heat and Mass Transfer, 102, 1034–1043 (2016).CrossRef
8.
go back to reference A. A. Uglov, “Effect of concentrated energy flows on materials,” Materialovedenie, No. 5, 3–7 (1997). A. A. Uglov, “Effect of concentrated energy flows on materials,” Materialovedenie, No. 5, 3–7 (1997).
9.
go back to reference A. G. Grigor’yants, Bases of Material Laser Treatment [in Russian], Mashinostroenie, Moscow (1989). A. G. Grigor’yants, Bases of Material Laser Treatment [in Russian], Mashinostroenie, Moscow (1989).
10.
go back to reference A. A. Vedenov and G. G. Gladush, Physical Processes During Material Laser Treatment [in Russian], Énergoatomizdat, Moscow (1985). A. A. Vedenov and G. G. Gladush, Physical Processes During Material Laser Treatment [in Russian], Énergoatomizdat, Moscow (1985).
11.
go back to reference A. N. Bekrenev, S. S. Zhatkin, and A. A. Parkin, “Study of metal heating dynamics during pulsed laser action,” Fiz. Khim. Obrab. Materialov, No. 6, 25–31(1994). A. N. Bekrenev, S. S. Zhatkin, and A. A. Parkin, “Study of metal heating dynamics during pulsed laser action,” Fiz. Khim. Obrab. Materialov, No. 6, 25–31(1994).
12.
go back to reference P. K. Galenko, E. V. Kharanzhevskii, and D. A. Danilov, “Structural steel high-speed crystallization during surface laser treatment,” ZhTF, 72, No. 5, 48–55 (2002). P. K. Galenko, E. V. Kharanzhevskii, and D. A. Danilov, “Structural steel high-speed crystallization during surface laser treatment,” ZhTF, 72, No. 5, 48–55 (2002).
13.
go back to reference V. S. Kraposhin and K. V. Shakhlevich, “Phase composition of iron-carbon alloys after quenching from liquid condition,” Metally, No. 5, 107–112 (1989). V. S. Kraposhin and K. V. Shakhlevich, “Phase composition of iron-carbon alloys after quenching from liquid condition,” Metally, No. 5, 107–112 (1989).
14.
go back to reference A. A. Balatskii, A. A. Uglov, and G. Ya. Lobacheva, “Kinetics of steel melting with a laser beam,” Fiz. Khim. Obrab. Materialov, No. 1, 135–137 (1977). A. A. Balatskii, A. A. Uglov, and G. Ya. Lobacheva, “Kinetics of steel melting with a laser beam,” Fiz. Khim. Obrab. Materialov, No. 1, 135–137 (1977).
15.
go back to reference Van Buren, Defects in Crystals [in Russian], Inostr. Lit., Moscow (1962). Van Buren, Defects in Crystals [in Russian], Inostr. Lit., Moscow (1962).
16.
go back to reference Yu. M. Lakhtin and Ya. D. Kogan, Metal and Alloy Surface Alloying with Laser Treatment [in Russian], Mashinostroenie, Moscow (1990). Yu. M. Lakhtin and Ya. D. Kogan, Metal and Alloy Surface Alloying with Laser Treatment [in Russian], Mashinostroenie, Moscow (1990).
17.
go back to reference I. M. Lyubarskii and A. S. Palatnik, Wear Metal Physics [in Russian], Metallurgiya, Moscow (1976). I. M. Lyubarskii and A. S. Palatnik, Wear Metal Physics [in Russian], Metallurgiya, Moscow (1976).
18.
go back to reference N. N. Rykalin, “Action of OKG radiation on iron alloys,” Fiz. Khim. Obrab. Materialov, No. 6, 14–21 (1972). N. N. Rykalin, “Action of OKG radiation on iron alloys,” Fiz. Khim. Obrab. Materialov, No. 6, 14–21 (1972).
19.
go back to reference D. M. Gureev, “Phase composition of high-speed steel during rapid laser melting crystallization,” Fiz. Khim. Obrab. Materialov, No. 6, 126–138 (1994). D. M. Gureev, “Phase composition of high-speed steel during rapid laser melting crystallization,” Fiz. Khim. Obrab. Materialov, No. 6, 126–138 (1994).
20.
go back to reference A. V. Brover, “Features of steel crystallization zone structure with high-speed later hardening,” Materialovedenie, No. 4, 30–35 (2008). A. V. Brover, “Features of steel crystallization zone structure with high-speed later hardening,” Materialovedenie, No. 4, 30–35 (2008).
21.
go back to reference A. V. Brover and L. D. D’yachenko, “Features of structure formation in metal and alloy laser melting zones,” MiTOM, No. 6, 29–33 (2009). A. V. Brover and L. D. D’yachenko, “Features of structure formation in metal and alloy laser melting zones,” MiTOM, No. 6, 29–33 (2009).
Metadata
Title
Features of Steel Structure Formation in Areas of High-Speed Laser Hardening from Liquid State
Authors
G. I. Brover
E. E. Shcherbakova
Publication date
28-09-2022
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01357-4

Other articles of this Issue 5-6/2022

Metallurgist 5-6/2022 Go to the issue

Premium Partners