Skip to main content
Top

2025 | OriginalPaper | Chapter

Federated Deep Learning Models for Stroke Prediction

Authors : Asma Mansour, Olfa Besbes, Takoua Abdellatif

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stroke is a life-threatening medical condition caused by an inadequate blood supply to the brain. According to the World Health Organization (WHO), stroke is a leading cause of death and disability worldwide. After a stroke, the affected brain areas fail to function normally, making early detection of warning signs crucial for effective treatment and reducing disease severity. Various Machine Learning (ML) and Deep Learning (DL) models have been developed to predict stroke occurrence. This research highlights the effectiveness of Federated Learning (FL), a decentralized training approach that bolsters privacy while preserving model performance. Our models outperform traditional ML and DL methods, achieving an accuracy of 98%. Evaluations using metrics such as accuracy, precision, recall, and F1 score confirm the robustness and generalizability of our approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference McMahan, H.B., et al.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (2016) McMahan, H.B., et al.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (2016)
3.
go back to reference Persson, M., et al.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61, 11 (2014)CrossRef Persson, M., et al.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61, 11 (2014)CrossRef
4.
go back to reference Salucci, M., Polo, A., Vrba, J.: Stratégie d’apprentissage par exemples en plusieurs étapes pour l’inversion des données de diffusion par micro-ondes en temps réel sur les accidents vasculaires cérébraux. Electronique (2021) Salucci, M., Polo, A., Vrba, J.: Stratégie d’apprentissage par exemples en plusieurs étapes pour l’inversion des données de diffusion par micro-ondes en temps réel sur les accidents vasculaires cérébraux. Electronique (2021)
5.
go back to reference Lin, C.H., Hsu, K.C., Johnson, K.R., Luby, M., Fann, Y.C.: Applying density-based outlier identifications using multiple datasets for validation of stroke clinical outcomes. Int. J. Med. Inform. 132, 103988 (2019) Lin, C.H., Hsu, K.C., Johnson, K.R., Luby, M., Fann, Y.C.: Applying density-based outlier identifications using multiple datasets for validation of stroke clinical outcomes. Int. J. Med. Inform. 132, 103988 (2019)
6.
go back to reference Liu, T., Fan, W., Wu, C.: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artificial Intell. Med. 101, 101723 (2019) Liu, T., Fan, W., Wu, C.: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artificial Intell. Med. 101, 101723 (2019)
7.
go back to reference Garg, R., Oh, E., Naidech, A., Kording, K., Prabhakaran, S.: Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovascular Diseases 28(7), 2045–2051 (2019) Garg, R., Oh, E., Naidech, A., Kording, K., Prabhakaran, S.: Automating ischemic stroke subtype classification using machine learning and natural language processing. J. Stroke Cerebrovascular Diseases 28(7), 2045–2051 (2019)
8.
go back to reference Sabut, S., Subudhi, A., Dash, M.: Automated segmentation and classification of brain stroke using expectation maximization and random forest classifier. Biocybernetics Biomedical Eng. (2019) Sabut, S., Subudhi, A., Dash, M.: Automated segmentation and classification of brain stroke using expectation maximization and random forest classifier. Biocybernetics Biomedical Eng. (2019)
9.
go back to reference Ortiz-Ramón, R., et al.: Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Comput. Med. Imaging Graph. 74, 12–24 (2019)CrossRef Ortiz-Ramón, R., et al.: Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Comput. Med. Imaging Graph. 74, 12–24 (2019)CrossRef
10.
go back to reference Nurhayati, O., Windasari, I.P.: Stroke identification system on the mobile based CT scan image. In: 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 113–116 (2015) Nurhayati, O., Windasari, I.P.: Stroke identification system on the mobile based CT scan image. In: 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 113–116 (2015)
11.
go back to reference Guoqing, W., et al.: Early identification of ischemic stroke in noncontrast computed tomography. Biomed. Signal Process. Control 52, 41–52 (2019)CrossRef Guoqing, W., et al.: Early identification of ischemic stroke in noncontrast computed tomography. Biomed. Signal Process. Control 52, 41–52 (2019)CrossRef
12.
go back to reference DA, Rizki, Klasifikasi Pendarahan Otak Menggunakan Extreme Learning Machine. Universitas Sumatera Utara (2017) DA, Rizki, Klasifikasi Pendarahan Otak Menggunakan Extreme Learning Machine. Universitas Sumatera Utara (2017)
13.
go back to reference Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2009) Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2009)
14.
go back to reference Marbun, J.T., Seniman1, Andayani, U.: Classification of stroke disease using convolutional neural network. J. Phys. Conf. Ser. 978(1), 012092 (2018) Marbun, J.T., Seniman1, Andayani, U.: Classification of stroke disease using convolutional neural network. J. Phys. Conf. Ser. 978(1), 012092 (2018)
15.
go back to reference Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9CrossRef Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-11723-8_​9CrossRef
16.
go back to reference Ce, J., et al.: Privacy-Preserving Technology to Help Millions of People: Federated Prediction Model for Stroke Prevention (2020) Ce, J., et al.: Privacy-Preserving Technology to Help Millions of People: Federated Prediction Model for Stroke Prevention (2020)
18.
go back to reference Yu, T.T.L., et al.: Collaborative Diabetic Retinopathy Severity Classification of Optical Coherence Tomography Data through Federated Learning. Invest. Ophthalmol. Vis. Sci 62(8), 1029–1029 (2021) Yu, T.T.L., et al.: Collaborative Diabetic Retinopathy Severity Classification of Optical Coherence Tomography Data through Federated Learning. Invest. Ophthalmol. Vis. Sci 62(8), 1029–1029 (2021)
19.
go back to reference Lo, J., et al.: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data. Ophthalmol. Sci. 1(4), 100069 (2021) Lo, J., et al.: Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data. Ophthalmol. Sci. 1(4), 100069 (2021)
20.
go back to reference Nguyen, T.X., et al.: Federated learning in ocular imaging: current progress and future direction. Diagnostics 12(11), 2835 (2022) Nguyen, T.X., et al.: Federated learning in ocular imaging: current progress and future direction. Diagnostics 12(11), 2835 (2022)
21.
go back to reference Elhanashi, A., Dini, P., Saponara, S., Zheng, Q.: TeleStroke: real-time stroke detection with federated learning and Yolov8 on edge devices. J. Real-Time Image Process. 21(4), 121 (2024) Elhanashi, A., Dini, P., Saponara, S., Zheng, Q.: TeleStroke: real-time stroke detection with federated learning and Yolov8 on edge devices. J. Real-Time Image Process. 21(4), 121 (2024)
22.
go back to reference Balázs B., Allaart, C.G., van Halteren, A.: Predicting stroke outcome: a case for multimodal deep learning methods with tabular and CT Perfusion data. J. Artif. Intell. Med. 147, 102719 (2024) Balázs B., Allaart, C.G., van Halteren, A.: Predicting stroke outcome: a case for multimodal deep learning methods with tabular and CT Perfusion data. J. Artif. Intell. Med. 147, 102719 (2024)
23.
go back to reference Öman, O., Mäkelä, T., Salli, E. et al.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3, 1–11 (2019) Öman, O., Mäkelä, T., Salli, E. et al.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3, 1–11 (2019)
24.
go back to reference Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group (2001) Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group (2001)
25.
go back to reference Zunair, H.: 3D image classification from CT scans. Computer Vision (23 Sep 2020) Zunair, H.: 3D image classification from CT scans. Computer Vision (23 Sep 2020)
26.
go back to reference Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018) Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018)
27.
go back to reference Wang, H.L., et al.: Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front. Neurol. 10, 910 (2019) Wang, H.L., et al.: Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front. Neurol. 10, 910 (2019)
Metadata
Title
Federated Deep Learning Models for Stroke Prediction
Authors
Asma Mansour
Olfa Besbes
Takoua Abdellatif
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_32

Premium Partner