Skip to main content
Top

2010 | OriginalPaper | Chapter

Feedback Control Systems Using Environmentally and Enzymatically Sensitive Hydrogels

Authors : Irma Y. Sanchez, Nicholas A. Peppas

Published in: Biomedical Applications of Hydrogels Handbook

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A large number of hydrogels can be classified as smart materials that offer a natural integration of sensing, actuating, and regulating functions applicable to feedback control systems. This multifunctionality added to biocompatibility and enzyme-based selectivity characteristics enables self-regulation or implicit control in hydrogels-based devices to maintain physiological variables at a desired level or range by appropriate drug release. Therefore, hydrogels can enhance the performance of individual actuator and sensing units. Applications of hydrogels in explicit and implicit controller systems are presented based on recent experimental and theoretical research studies. Integration of cascade and feedforward control types of functionalities in hydrogels systems is suggested from their capability to respond to more than one stimulus. Enzymatic glucose sensing and insulin delivery are often used as references for the discussion of hydrogels in the development of sensor, actuator, and control technology due to the relevance of the diabetes disease.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heller A (2005) Integrated medical feedback systems for drug delivery. AIChE J 51(4):1054–1066CrossRef Heller A (2005) Integrated medical feedback systems for drug delivery. AIChE J 51(4):1054–1066CrossRef
2.
go back to reference Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48CrossRef Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48CrossRef
3.
go back to reference Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–832CrossRef Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–832CrossRef
4.
go back to reference Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78(14):5149–5157CrossRef Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78(14):5149–5157CrossRef
5.
go back to reference Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127(26):9588–9592CrossRef Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127(26):9588–9592CrossRef
6.
go back to reference Kim H, Cohen RE, Hammond PT, Irvine DJ (2006) Live lymphocyte array for biosensing. Adv Funct Mater 16(10):1313–1323CrossRef Kim H, Cohen RE, Hammond PT, Irvine DJ (2006) Live lymphocyte array for biosensing. Adv Funct Mater 16(10):1313–1323CrossRef
7.
go back to reference Hilt JZ, Gupta AK, Bashir R, Peppas NA (2003) Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 5(3):177–184CrossRef Hilt JZ, Gupta AK, Bashir R, Peppas NA (2003) Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 5(3):177–184CrossRef
8.
go back to reference Klumb LA, Horbett TA (1991) Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 18:59–80CrossRef Klumb LA, Horbett TA (1991) Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 18:59–80CrossRef
9.
go back to reference Jiménez C, Bartrol J, de Rooij NF, Koudelka-Hep M (1997) Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal Chim Acta 351(1):169–176CrossRef Jiménez C, Bartrol J, de Rooij NF, Koudelka-Hep M (1997) Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal Chim Acta 351(1):169–176CrossRef
10.
go back to reference Podual K, Doyle FJ III, Peppas NA (2000) Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH. Biomaterials 21:1439–1450CrossRef Podual K, Doyle FJ III, Peppas NA (2000) Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH. Biomaterials 21:1439–1450CrossRef
11.
go back to reference Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102CrossRef Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102CrossRef
12.
go back to reference Karmalkar RN, Premnath V, Kulkarni MG, Mashelkar RA (2000) Switching biomimetic hydrogels. Proc R Soc Lond, Ser A 456(1998):1305–1320CrossRef Karmalkar RN, Premnath V, Kulkarni MG, Mashelkar RA (2000) Switching biomimetic hydrogels. Proc R Soc Lond, Ser A 456(1998):1305–1320CrossRef
13.
go back to reference Kost J, Langer R (1992) Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechnol 10(4):127–131 Kost J, Langer R (1992) Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechnol 10(4):127–131
14.
go back to reference Traitel T, Goldbart R, Kost J (2008) Smart polymers for responsive drug-delivery systems. J Biomater Sci Polym Ed 19(6):755–767CrossRef Traitel T, Goldbart R, Kost J (2008) Smart polymers for responsive drug-delivery systems. J Biomater Sci Polym Ed 19(6):755–767CrossRef
15.
go back to reference Saslavski O, Couvrer P, Peppas NA (1998) In: Heller J, Harris F, Lohmann H, Merkle H, Robinson J (eds) Controlled release of bioactive materials, vol 1. Controlled Release Society, Basel, p 26 Saslavski O, Couvrer P, Peppas NA (1998) In: Heller J, Harris F, Lohmann H, Merkle H, Robinson J (eds) Controlled release of bioactive materials, vol 1. Controlled Release Society, Basel, p 26
16.
go back to reference Aschkenasy C, Kost J (2005) On-demand release by ultrasound from osmotically swollen hydrophobic matrices. J Control Release 110(1):58–66CrossRef Aschkenasy C, Kost J (2005) On-demand release by ultrasound from osmotically swollen hydrophobic matrices. J Control Release 110(1):58–66CrossRef
17.
go back to reference Kwok C, Mourad P, Crum L, Ratner B (2001) Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res 57:151–164CrossRef Kwok C, Mourad P, Crum L, Ratner B (2001) Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res 57:151–164CrossRef
18.
go back to reference Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stoodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49:4272–4279CrossRef Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stoodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49:4272–4279CrossRef
19.
go back to reference Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef
20.
go back to reference Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210CrossRef Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210CrossRef
21.
go back to reference Bassetti MJ, Chatterjee AN, De SK, Aluru NR, Beebe DJ (2005) Development and modeling of electrically triggered hydrogels for microfluidic applications. J Microelectromech Syst 14(5):1198–1207CrossRef Bassetti MJ, Chatterjee AN, De SK, Aluru NR, Beebe DJ (2005) Development and modeling of electrically triggered hydrogels for microfluidic applications. J Microelectromech Syst 14(5):1198–1207CrossRef
22.
23.
go back to reference Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23(5):1517–1519CrossRef Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23(5):1517–1519CrossRef
24.
go back to reference Lee JK, Lee H, Jang E, Lee SD, Kim SJ (2005) Photo-triggering of the membrane gates in photo-responsive polymer for drug release. In: Engineering in medicine and biology society. 27th Annual International Conference of the IEEE-EMBS. Shanghai, China, pp 5069-5072 Lee JK, Lee H, Jang E, Lee SD, Kim SJ (2005) Photo-triggering of the membrane gates in photo-responsive polymer for drug release. In: Engineering in medicine and biology society. 27th Annual International Conference of the IEEE-EMBS. Shanghai, China, pp 5069-5072
25.
go back to reference Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef
26.
go back to reference Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434(7035):879–882CrossRef Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434(7035):879–882CrossRef
27.
go back to reference Matsumoto S, Yamaguchi S, Ueno S, Komatsu H, Ikeda M, Ishizuka K, Iko Y, Tabata KV, Aoki H, Ito S, Noji H, Hamachi I (2008) Photo gel-sol/sol-gel transition and its patterning of a supramolcecular hydrogel as stimuli-responsive biomaterials. Chem Eur J 14(13):3977–3986CrossRef Matsumoto S, Yamaguchi S, Ueno S, Komatsu H, Ikeda M, Ishizuka K, Iko Y, Tabata KV, Aoki H, Ito S, Noji H, Hamachi I (2008) Photo gel-sol/sol-gel transition and its patterning of a supramolcecular hydrogel as stimuli-responsive biomaterials. Chem Eur J 14(13):3977–3986CrossRef
28.
go back to reference Yamaguchi S, Matsumoto S, Ishizuka K, Iko Y, Tabata KV, Arata HF, Fujita H, Noji H, Hamachi I (2008) Thermally responsive supramolecular nanomeshes for on/off switching of the rotary motion of F1-ATPase at the single-molecule level. Chem Eur J 14:1891–1896CrossRef Yamaguchi S, Matsumoto S, Ishizuka K, Iko Y, Tabata KV, Arata HF, Fujita H, Noji H, Hamachi I (2008) Thermally responsive supramolecular nanomeshes for on/off switching of the rotary motion of F1-ATPase at the single-molecule level. Chem Eur J 14:1891–1896CrossRef
29.
go back to reference Kim JH, Lee TR (2008) Thermo-responsive hydrogel-coated gold nanoshells for in vivo drug delivery. J Biomed Pharm Eng 2(1):29–35 Kim JH, Lee TR (2008) Thermo-responsive hydrogel-coated gold nanoshells for in vivo drug delivery. J Biomed Pharm Eng 2(1):29–35
30.
go back to reference Owens DE, Jian YC, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40:7306–7310CrossRef Owens DE, Jian YC, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40:7306–7310CrossRef
31.
go back to reference Owens DE, Eby JK, Jian Y, Peppas NA (2007) Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res 83A:692–695CrossRef Owens DE, Eby JK, Jian Y, Peppas NA (2007) Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res 83A:692–695CrossRef
32.
go back to reference Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39(19):6584–6589CrossRef Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39(19):6584–6589CrossRef
33.
go back to reference Park TG, Hoffman AS (1993) Thermal cycling effects on the bioreactor performances of immobilized beta-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb Technol 15(6):476–482CrossRef Park TG, Hoffman AS (1993) Thermal cycling effects on the bioreactor performances of immobilized beta-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb Technol 15(6):476–482CrossRef
34.
go back to reference Ehrick J, Deo S, Browning T, Bachas L, Madou M, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4(4):298–302CrossRef Ehrick J, Deo S, Browning T, Bachas L, Madou M, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4(4):298–302CrossRef
35.
go back to reference Jun HW, Yuwono V, Paramonov SE, Hartgerink JD (2005) Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater 17(21):2612–2617CrossRef Jun HW, Yuwono V, Paramonov SE, Hartgerink JD (2005) Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater 17(21):2612–2617CrossRef
36.
go back to reference Li CM, Madsen J, Armes SP, Lewis AL (2006) A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. Angew Chem Int Ed 45(21):3510–3513CrossRef Li CM, Madsen J, Armes SP, Lewis AL (2006) A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. Angew Chem Int Ed 45(21):3510–3513CrossRef
37.
go back to reference Liu RH, Yu Q, Beebe DJ (2001) Fabrication and characterization of hydrogel based microvalves. J Microelectromech Syst 11:45–53CrossRef Liu RH, Yu Q, Beebe DJ (2001) Fabrication and characterization of hydrogel based microvalves. J Microelectromech Syst 11:45–53CrossRef
38.
go back to reference Beebe DJ, Moore J, Bauer J, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef Beebe DJ, Moore J, Bauer J, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef
39.
go back to reference Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591CrossRef Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591CrossRef
40.
go back to reference Zourob M, Gough JE, Ulijn RV (2006) A micropatterned hydrogel platform for chemical synthesis and biological analysis. Adv Mater 18(5):655–659CrossRef Zourob M, Gough JE, Ulijn RV (2006) A micropatterned hydrogel platform for chemical synthesis and biological analysis. Adv Mater 18(5):655–659CrossRef
41.
go back to reference Hall H, Hubbell JA (2005) Modified fibrin hydrogels stimulate angiogenesis in vivo: potential application to increase perfusion of ischemic tissues. Materwiss Werksttech 36(12):768–774CrossRef Hall H, Hubbell JA (2005) Modified fibrin hydrogels stimulate angiogenesis in vivo: potential application to increase perfusion of ischemic tissues. Materwiss Werksttech 36(12):768–774CrossRef
42.
go back to reference Silva GA, Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef Silva GA, Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef
43.
go back to reference Vemula PK, Cruikshank GA, Karp JF, John G (2009) Self-assembled prodrugs: an enzymatically triggered-drug delivery platform. Biomaterials 30:383–393CrossRef Vemula PK, Cruikshank GA, Karp JF, John G (2009) Self-assembled prodrugs: an enzymatically triggered-drug delivery platform. Biomaterials 30:383–393CrossRef
44.
go back to reference Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 6(2):632–637CrossRef Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 6(2):632–637CrossRef
45.
go back to reference Lee MR, Baek KH, Jin HJ, Jung YG, Shin I (2004) Targeted enzyme-responsive drug carriers: studies on the delivery of a combination of drugs. Angew Chem Int Ed 43(13):1675–1678CrossRef Lee MR, Baek KH, Jin HJ, Jung YG, Shin I (2004) Targeted enzyme-responsive drug carriers: studies on the delivery of a combination of drugs. Angew Chem Int Ed 43(13):1675–1678CrossRef
46.
go back to reference van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Two-stage enzyme mediated drug release from LMWG hydrogels. Org Biomol Chem 3(16):2917–2920CrossRef van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Two-stage enzyme mediated drug release from LMWG hydrogels. Org Biomol Chem 3(16):2917–2920CrossRef
47.
go back to reference Kumashiro T, Ooya T, Yui N (2004) Dextran hydrogels containing poly(N-isopropyl acrylamide) as grafts and cross-linkers exhibiting enzymatic regulation in a specific temperature range. Macromol Rapid Commun 25:867CrossRef Kumashiro T, Ooya T, Yui N (2004) Dextran hydrogels containing poly(N-isopropyl acrylamide) as grafts and cross-linkers exhibiting enzymatic regulation in a specific temperature range. Macromol Rapid Commun 25:867CrossRef
48.
go back to reference Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579CrossRef Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579CrossRef
49.
go back to reference Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 4(6):881–887CrossRef Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 4(6):881–887CrossRef
50.
go back to reference Sánchez-Chávez IY, Martínez-Chapa SO, Peppas NA (2008) Computer evaluation of hydrogel-based systems for diabetes closed Loop treatment. AIChE J 54(7):1901–1911CrossRef Sánchez-Chávez IY, Martínez-Chapa SO, Peppas NA (2008) Computer evaluation of hydrogel-based systems for diabetes closed Loop treatment. AIChE J 54(7):1901–1911CrossRef
51.
go back to reference Lee SH, Eddington DT, Kim YM, Kim W, Beebe DJ (2003) Control mechanism of an organic self-regulating microfluidic system. J Electromech Syst 12(6):848–854CrossRef Lee SH, Eddington DT, Kim YM, Kim W, Beebe DJ (2003) Control mechanism of an organic self-regulating microfluidic system. J Electromech Syst 12(6):848–854CrossRef
52.
go back to reference Agarwal AK, Dong L, Beebe DJ, Jiang H (2007) Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 7(3):310–315CrossRef Agarwal AK, Dong L, Beebe DJ, Jiang H (2007) Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 7(3):310–315CrossRef
53.
go back to reference Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRef Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRef
54.
go back to reference Nakayama G, Roskos K, Fritzinger B, Heller J (1995) A study of reversibly inactivated lipases for use in a morphine-triggered naltrexone delivery system. J Biomed Mater Res 29:1389–1396CrossRef Nakayama G, Roskos K, Fritzinger B, Heller J (1995) A study of reversibly inactivated lipases for use in a morphine-triggered naltrexone delivery system. J Biomed Mater Res 29:1389–1396CrossRef
55.
go back to reference Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRef Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRef
56.
go back to reference Farmer TG, Edgar TF, Peppas NA (2008) In vivo simulations of the intravenous dynamics of submicrometer particles of pH-responsive cationic hydrogels in diabetic patients. Ind Eng Chem Res 47(24):10053–10063CrossRef Farmer TG, Edgar TF, Peppas NA (2008) In vivo simulations of the intravenous dynamics of submicrometer particles of pH-responsive cationic hydrogels in diabetic patients. Ind Eng Chem Res 47(24):10053–10063CrossRef
57.
go back to reference Sanchez-Chávez IY, Morales-Menéndez R, Martínez-Chapa SO (2009) Glucose optimal control system in diabetes treatment. Appl Math Comput 209(1):19–30CrossRef Sanchez-Chávez IY, Morales-Menéndez R, Martínez-Chapa SO (2009) Glucose optimal control system in diabetes treatment. Appl Math Comput 209(1):19–30CrossRef
58.
go back to reference Parker RS, Doyle FJ III, Ward JH, Peppas NA (2000) Robust H∞ glucose control in diabetes using a physiological model. AIChE J 46:2537–2549CrossRef Parker RS, Doyle FJ III, Ward JH, Peppas NA (2000) Robust H glucose control in diabetes using a physiological model. AIChE J 46:2537–2549CrossRef
59.
go back to reference Parker R, Doyle F III, Peppas NA (1999) Model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 46(2):148–157CrossRef Parker R, Doyle F III, Peppas NA (1999) Model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 46(2):148–157CrossRef
60.
go back to reference Zhang K, Wu X (2002) Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J Control Release 80:169–178CrossRef Zhang K, Wu X (2002) Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J Control Release 80:169–178CrossRef
61.
go back to reference Cheng SY, Constantinidis I, Sambanis A (2006) Use of glucose-responsive material to regulate insulin release from constitutively secreting cells. Biotechnol Bioeng 93(6):1079–1088CrossRef Cheng SY, Constantinidis I, Sambanis A (2006) Use of glucose-responsive material to regulate insulin release from constitutively secreting cells. Biotechnol Bioeng 93(6):1079–1088CrossRef
Metadata
Title
Feedback Control Systems Using Environmentally and Enzymatically Sensitive Hydrogels
Authors
Irma Y. Sanchez
Nicholas A. Peppas
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-5919-5_3

Premium Partner