Skip to main content
Top

2018 | OriginalPaper | Chapter

FEM Analysis of Different Materials Based on Explicit Dynamics ANSYS in Electrochemical Discharge Machine

Authors : Pravin Pawar, Raj Ballav, Amaresh Kumar

Published in: Simulations for Design and Manufacturing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrochemical discharge machining is a hybrid machining process. This process includes the electrochemical and electro-discharge machining which is employed to machining of conducting as well as nonconducting materials. In this chapter, the explicit dynamics ANSYS was used for the analysis of strain, stress, and deformation of different materials in electrochemical discharge machine model. The solid model of the electrochemical discharge machine is developed in ANSYS Workbench. By using ANSYS, the force and displacement were applied to the cathode tool on the different workpiece materials, and the equivalent elastic strain, equivalent (von Mises) stress, and total deformation were evaluated under certain conditions. The obtained results were compared with one another to understand the characteristics of different materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dixit, P. M., & Dixit, U. S. (2008). Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer Science & Business Media. Dixit, P. M., & Dixit, U. S. (2008). Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer Science & Business Media.
2.
go back to reference Jain, V. K. (2008). Advanced (non-traditional) machining processes. Machining: Fundamentals and recent advances (pp. 299–327). London: Springer.CrossRef Jain, V. K. (2008). Advanced (non-traditional) machining processes. Machining: Fundamentals and recent advances (pp. 299–327). London: Springer.CrossRef
3.
go back to reference Singh, T., & Dvivedi, A. (2016). Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods. International Journal of Machine Tools and Manufacture, 105, 1–13.CrossRef Singh, T., & Dvivedi, A. (2016). Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods. International Journal of Machine Tools and Manufacture, 105, 1–13.CrossRef
4.
go back to reference Wuthrich, R. (2009). Machining with electrochemical discharges—An overview. Micro and nano technologies, micromachining using electrochemical discharge phenomenon (pp. 1–9). Boston: William Andrew Publishing. Wuthrich, R. (2009). Machining with electrochemical discharges—An overview. Micro and nano technologies, micromachining using electrochemical discharge phenomenon (pp. 1–9). Boston: William Andrew Publishing.
5.
go back to reference Kurafuji, H., & Suda, K. (1968). Electrical discharge drilling of glass. Annals CIRP, 16, 415–419. Kurafuji, H., & Suda, K. (1968). Electrical discharge drilling of glass. Annals CIRP, 16, 415–419.
6.
go back to reference Crichton, I. M., & McGeough, J. A. (1985). Studies of the discharge mechanisms in electrochemical arc machining. Journal of Applied Electrochemistry, 15(1), 113–119.CrossRef Crichton, I. M., & McGeough, J. A. (1985). Studies of the discharge mechanisms in electrochemical arc machining. Journal of Applied Electrochemistry, 15(1), 113–119.CrossRef
7.
go back to reference Gupta, K., Perveen, A., & Molardi, C. (2017). Machining of glass materials: An overview. In Advanced manufacturing technologies: Modern machining, advanced joining, sustainable manufacturing (pp. 23–47). Springer International Publishing. Gupta, K., Perveen, A., & Molardi, C. (2017). Machining of glass materials: An overview. In Advanced manufacturing technologies: Modern machining, advanced joining, sustainable manufacturing (pp. 23–47). Springer International Publishing.
8.
go back to reference Wuthrich, R., & Fascio, V. (2005). Machining of non-conducting materials using electrochemical discharge phenomenon—An overview. International Journal of Machine Tools and Manufacture, 45(9), 1095–1108.CrossRef Wuthrich, R., & Fascio, V. (2005). Machining of non-conducting materials using electrochemical discharge phenomenon—An overview. International Journal of Machine Tools and Manufacture, 45(9), 1095–1108.CrossRef
9.
go back to reference Paul, L., & Hiremath, S. S. (2016). Experimental and theoretical investigations in ECDM process—An overview. Procedia Technology, 25, 1242–1249.CrossRef Paul, L., & Hiremath, S. S. (2016). Experimental and theoretical investigations in ECDM process—An overview. Procedia Technology, 25, 1242–1249.CrossRef
10.
go back to reference Goud, M., Sharma, A. K., & Jawalkar, C. (2016). A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precision Engineering, 45, 1–17.CrossRef Goud, M., Sharma, A. K., & Jawalkar, C. (2016). A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precision Engineering, 45, 1–17.CrossRef
11.
go back to reference Pawar, P., Ballav, R., & Kumar, A. (2015). Revolutionary developments in ECDM process: An overview. Materials Today: Proceedings, 2(4–5), 3188–3195.CrossRef Pawar, P., Ballav, R., & Kumar, A. (2015). Revolutionary developments in ECDM process: An overview. Materials Today: Proceedings, 2(4–5), 3188–3195.CrossRef
12.
go back to reference Celik, H. K. (2017). Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biology and Technology, 128, 83–97.CrossRef Celik, H. K. (2017). Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biology and Technology, 128, 83–97.CrossRef
13.
go back to reference Callister, W. D., & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). New York: Wiley. Callister, W. D., & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). New York: Wiley.
14.
go back to reference Kulkarni, A., Sharan, R., & Lal, G. K. (2002). An experimental study of discharge mechanism in electrochemical discharge machining. International Journal of Machine Tools and Manufacture, 42(10), 1121–1127.CrossRef Kulkarni, A., Sharan, R., & Lal, G. K. (2002). An experimental study of discharge mechanism in electrochemical discharge machining. International Journal of Machine Tools and Manufacture, 42(10), 1121–1127.CrossRef
15.
go back to reference Singh, Y. P., Jain, V. K., Kumar, P., & Agrawal, D. C. (1996). Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process. Journal of Materials Processing Technology, 58(1), 24–31.CrossRef Singh, Y. P., Jain, V. K., Kumar, P., & Agrawal, D. C. (1996). Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process. Journal of Materials Processing Technology, 58(1), 24–31.CrossRef
16.
go back to reference Lim, H. J., Lim, Y. M., Kim, S. H., & Kwak, Y. K. (2001). Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials. Proceedings of SPIE, 4416, 348–353.CrossRef Lim, H. J., Lim, Y. M., Kim, S. H., & Kwak, Y. K. (2001). Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials. Proceedings of SPIE, 4416, 348–353.CrossRef
17.
go back to reference Zheng, Z. P., Cheng, W. H., Huang, F. Y., & Yan, B. H. (2007). 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. Journal of Micromechanics and Microengineering, 17(5), 960–966.CrossRef Zheng, Z. P., Cheng, W. H., Huang, F. Y., & Yan, B. H. (2007). 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. Journal of Micromechanics and Microengineering, 17(5), 960–966.CrossRef
18.
go back to reference Wuthrich, R., Spaelter, U., & Bleuler, H. (2006). The current signal in spark-assisted chemical engraving (SACE): What does it tell us? Journal of Micromechanics and Microengineering, 16(4), 779–785.CrossRef Wuthrich, R., Spaelter, U., & Bleuler, H. (2006). The current signal in spark-assisted chemical engraving (SACE): What does it tell us? Journal of Micromechanics and Microengineering, 16(4), 779–785.CrossRef
19.
go back to reference Ziki, J. D. A., & Wuthrich, R. (2015). Nature of drilling forces during spark assisted chemical engraving. Manufacturing Letters, 4, 10–13.CrossRef Ziki, J. D. A., & Wuthrich, R. (2015). Nature of drilling forces during spark assisted chemical engraving. Manufacturing Letters, 4, 10–13.CrossRef
20.
go back to reference Allagui, A., & Wuthrich, R. (2009). Gas film formation time and gas film life time during electrochemical discharge phenomenon. Electrochimica Acta, 54(23), 5336–5343.CrossRef Allagui, A., & Wuthrich, R. (2009). Gas film formation time and gas film life time during electrochemical discharge phenomenon. Electrochimica Acta, 54(23), 5336–5343.CrossRef
21.
go back to reference Cheng, C. P., Wu, K. L., Mai, C. C., Yang, C. K., Hsu, Y. S., & Yan, B. H. (2010). Study of gas film quality in electrochemical discharge machining. International Journal of Machine Tools and Manufacture, 50(8), 689–697.CrossRef Cheng, C. P., Wu, K. L., Mai, C. C., Yang, C. K., Hsu, Y. S., & Yan, B. H. (2010). Study of gas film quality in electrochemical discharge machining. International Journal of Machine Tools and Manufacture, 50(8), 689–697.CrossRef
22.
go back to reference Wuthrich, R., & Hof, L. A. (2006). The gas film in spark assisted chemical engraving (SACE)—A key element or micro-machining applications. International Journal of Machine Tools and Manufacture, 46(7), 828–835.CrossRef Wuthrich, R., & Hof, L. A. (2006). The gas film in spark assisted chemical engraving (SACE)—A key element or micro-machining applications. International Journal of Machine Tools and Manufacture, 46(7), 828–835.CrossRef
23.
go back to reference Yang, C. K., Cheng, C. P., Mai, C. C., Wang, A. C., Hung, J. C., & Yan, B. H. (2010). Effect of surface roughness of tool electrode materials in ECDM performance. International Journal of Machine Tools and Manufacture, 50(12), 1088–1096.CrossRef Yang, C. K., Cheng, C. P., Mai, C. C., Wang, A. C., Hung, J. C., & Yan, B. H. (2010). Effect of surface roughness of tool electrode materials in ECDM performance. International Journal of Machine Tools and Manufacture, 50(12), 1088–1096.CrossRef
24.
go back to reference Ziki, J. D. A., Hof, L. A., & Wuthrich, R. (2015). The machining temperature during spark assisted chemical engraving of glass. Manufacturing Letters, 3, 9–13.CrossRef Ziki, J. D. A., Hof, L. A., & Wuthrich, R. (2015). The machining temperature during spark assisted chemical engraving of glass. Manufacturing Letters, 3, 9–13.CrossRef
25.
go back to reference Didar, T. F., Dolatabadi, A., & Wuthrich, R. (2009). Local hardness and density variation in glass substrates machined with spark assisted chemical engraving (SACE). Materials Letters, 63(1), 51–53.CrossRef Didar, T. F., Dolatabadi, A., & Wuthrich, R. (2009). Local hardness and density variation in glass substrates machined with spark assisted chemical engraving (SACE). Materials Letters, 63(1), 51–53.CrossRef
26.
go back to reference Bhattacharyya, B., Doloi, B. N., & Sorkhel, S. K. (1999). Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 95(1), 145–154.CrossRef Bhattacharyya, B., Doloi, B. N., & Sorkhel, S. K. (1999). Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 95(1), 145–154.CrossRef
27.
go back to reference Basak, I., & Ghosh, A. (1996). Mechanism of spark generation during electrochemical discharge machining: A theoretical model and experimental verification. Journal of Materials Processing Technology, 62(1–3), 46–53.CrossRef Basak, I., & Ghosh, A. (1996). Mechanism of spark generation during electrochemical discharge machining: A theoretical model and experimental verification. Journal of Materials Processing Technology, 62(1–3), 46–53.CrossRef
28.
go back to reference Liu, J. W., Yue, T. M., & Guo, Z. N. (2010). An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. International Journal of Machine Tools and Manufacture, 50(1), 86–96.CrossRef Liu, J. W., Yue, T. M., & Guo, Z. N. (2010). An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. International Journal of Machine Tools and Manufacture, 50(1), 86–96.CrossRef
29.
go back to reference Fascio, V., Wuthrich, R., & Bleuler, H. (2004). Spark assisted chemical engraving in the light of electrochemistry. Electrochimica Acta, 49(22), 3997–4003.CrossRef Fascio, V., Wuthrich, R., & Bleuler, H. (2004). Spark assisted chemical engraving in the light of electrochemistry. Electrochimica Acta, 49(22), 3997–4003.CrossRef
30.
go back to reference Kamaraj, A. B., Jui, S. K., Cai, Z., & Sundaram, M. M. (2015). A mathematical model to predict overcut during electrochemical discharge machining. The International Journal of Advanced Manufacturing Technology, 81(1–4), 685–691.CrossRef Kamaraj, A. B., Jui, S. K., Cai, Z., & Sundaram, M. M. (2015). A mathematical model to predict overcut during electrochemical discharge machining. The International Journal of Advanced Manufacturing Technology, 81(1–4), 685–691.CrossRef
31.
go back to reference Bhondwe, K. L., Yadava, V., & Kathiresan, G. (2006). Finite element prediction of material removal rate due to electro-chemical spark machining. International Journal of Machine Tools and Manufacture, 46(14), 1699–1706.CrossRef Bhondwe, K. L., Yadava, V., & Kathiresan, G. (2006). Finite element prediction of material removal rate due to electro-chemical spark machining. International Journal of Machine Tools and Manufacture, 46(14), 1699–1706.CrossRef
32.
go back to reference Wei, C., Xu, K., Ni, J., Brzezinski, A. J., & Hu, D. (2011). A finite element based model for electrochemical discharge machining in discharge regime. The International Journal of Advanced Manufacturing Technology, 54(9), 987–995.CrossRef Wei, C., Xu, K., Ni, J., Brzezinski, A. J., & Hu, D. (2011). A finite element based model for electrochemical discharge machining in discharge regime. The International Journal of Advanced Manufacturing Technology, 54(9), 987–995.CrossRef
33.
go back to reference Skrabalak, G., Zybura-Skrabalak, M., & Ruszaj, A. (2004). Building of rules base for fuzzy-logic control of the ECDM process. Journal of Materials Processing Technology, 149(1), 530–535.CrossRef Skrabalak, G., Zybura-Skrabalak, M., & Ruszaj, A. (2004). Building of rules base for fuzzy-logic control of the ECDM process. Journal of Materials Processing Technology, 149(1), 530–535.CrossRef
34.
go back to reference Coteata, M., Pop, N., Schulze, H. P., Slatineanu, L., & Dodun, O. (2016). Investigation on hybrid electrochemical discharge drilling process using passivating electrolyte. Procedia CIRP, 42, 778–782.CrossRef Coteata, M., Pop, N., Schulze, H. P., Slatineanu, L., & Dodun, O. (2016). Investigation on hybrid electrochemical discharge drilling process using passivating electrolyte. Procedia CIRP, 42, 778–782.CrossRef
35.
go back to reference Gautam, N., & Jain, V. K. (1998). Experimental investigations into ECSD process using various tool kinematics. International Journal of Machine Tools and Manufacture, 38(1–2), 15–27.CrossRef Gautam, N., & Jain, V. K. (1998). Experimental investigations into ECSD process using various tool kinematics. International Journal of Machine Tools and Manufacture, 38(1–2), 15–27.CrossRef
36.
go back to reference Jui, S. K., Kamaraj, A. B., & Sundaram, M. M. (2013). High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM). Journal of Manufacturing Processes, 15(4), 460–466.CrossRef Jui, S. K., Kamaraj, A. B., & Sundaram, M. M. (2013). High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM). Journal of Manufacturing Processes, 15(4), 460–466.CrossRef
37.
go back to reference Huang, S. F., Liu, Y., Li, J., Hu, H. X., & Sun, L. Y. (2014). Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Materials and Manufacturing Processes, 29(5), 634–637.CrossRef Huang, S. F., Liu, Y., Li, J., Hu, H. X., & Sun, L. Y. (2014). Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Materials and Manufacturing Processes, 29(5), 634–637.CrossRef
38.
go back to reference Dhanvijay, M. R., & Ahuja, B. B. (2014). Micromachining of ceramics by electrochemical discharge process considering stagnant and electrolyte flow method. Procedia Technology, 14, 165–172.CrossRef Dhanvijay, M. R., & Ahuja, B. B. (2014). Micromachining of ceramics by electrochemical discharge process considering stagnant and electrolyte flow method. Procedia Technology, 14, 165–172.CrossRef
39.
go back to reference Zhang, Y., Xu, Z., Xing, J., & Zhu, D. (2015). Enhanced machining performance of micro holes using electrochemical discharge machining with super-high-pressure interior flushing. International Journal of Electrochemical Science, 10, 8465–8483. Zhang, Y., Xu, Z., Xing, J., & Zhu, D. (2015). Enhanced machining performance of micro holes using electrochemical discharge machining with super-high-pressure interior flushing. International Journal of Electrochemical Science, 10, 8465–8483.
40.
go back to reference Han, M. S., Min, B. K., & Lee, S. J. (2007). Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. Journal of Materials Processing Technology, 191(1), 224–227.CrossRef Han, M. S., Min, B. K., & Lee, S. J. (2007). Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. Journal of Materials Processing Technology, 191(1), 224–227.CrossRef
41.
go back to reference Pawar, P., Sinha, S., Kumar, A., & Ballav, R. (2014). Review on research trends in electrochemical discharge machining. In 4th National Conference on Recent in Advances in Manufacturing (RAM-2014) (pp. 132–137). Pawar, P., Sinha, S., Kumar, A., & Ballav, R. (2014). Review on research trends in electrochemical discharge machining. In 4th National Conference on Recent in Advances in Manufacturing (RAM-2014) (pp. 132–137).
42.
go back to reference Jain, V. K., Choudhury, S. K., & Ramesh, K. M. (2002). On the machining of alumina and glass. International Journal of Machine Tools and Manufacture, 42(11), 1269–1276.CrossRef Jain, V. K., Choudhury, S. K., & Ramesh, K. M. (2002). On the machining of alumina and glass. International Journal of Machine Tools and Manufacture, 42(11), 1269–1276.CrossRef
43.
go back to reference Coteata, M., Ciofu, C., Slatineanu, L., Munteanu, A., & Dodun, O. (2009). Establishing the electrical discharges weight in electrochemical discharge drilling. International Journal of Material Forming, 2, 673–676.CrossRef Coteata, M., Ciofu, C., Slatineanu, L., Munteanu, A., & Dodun, O. (2009). Establishing the electrical discharges weight in electrochemical discharge drilling. International Journal of Material Forming, 2, 673–676.CrossRef
44.
go back to reference Abou Ziki, J. D., & Wuthrich, R. (2012). Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving. The International Journal of Advanced Manufacturing Technology, 61(5), 481–486.CrossRef Abou Ziki, J. D., & Wuthrich, R. (2012). Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving. The International Journal of Advanced Manufacturing Technology, 61(5), 481–486.CrossRef
45.
go back to reference Han, M. S., Min, B. K., & Lee, S. J. (2008). Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode. Journal of Micromechanics and Microengineering, 18(4), 045019.CrossRef Han, M. S., Min, B. K., & Lee, S. J. (2008). Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode. Journal of Micromechanics and Microengineering, 18(4), 045019.CrossRef
46.
go back to reference Jiang, B., Lan, S., Ni, J., & Zhang, Z. (2014). Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials. Journal of Materials Processing Technology, 214(4), 892–898.CrossRef Jiang, B., Lan, S., Ni, J., & Zhang, Z. (2014). Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials. Journal of Materials Processing Technology, 214(4), 892–898.CrossRef
47.
go back to reference Yang, C. K., Wu, K. L., Hung, J. C., Lee, S. M., Lin, J. C., & Yan, B. H. (2011). Enhancement of ECDM efficiency and accuracy by spherical tool electrode. International Journal of Machine Tools and Manufacture, 51(6), 528–535.CrossRef Yang, C. K., Wu, K. L., Hung, J. C., Lee, S. M., Lin, J. C., & Yan, B. H. (2011). Enhancement of ECDM efficiency and accuracy by spherical tool electrode. International Journal of Machine Tools and Manufacture, 51(6), 528–535.CrossRef
48.
go back to reference Jain, V. K., & Adhikary, S. (2008). On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions. Journal of Materials Processing Technology, 200(1), 460–470.CrossRef Jain, V. K., & Adhikary, S. (2008). On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions. Journal of Materials Processing Technology, 200(1), 460–470.CrossRef
49.
go back to reference Mediliyegedara, T. K. K. R., De Silva, A. K. M., Harrison, D. K., & McGeough, J. A. (2005). New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. Journal of Materials Processing Technology, 167(2), 338–343.CrossRef Mediliyegedara, T. K. K. R., De Silva, A. K. M., Harrison, D. K., & McGeough, J. A. (2005). New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. Journal of Materials Processing Technology, 167(2), 338–343.CrossRef
50.
go back to reference Gao, C., Liu, Z., & Li, A. (2014). Study of micro drilling on Pyrex glass using spark assisted chemical engraving. Micro and Nanosystems, 6(1), 26–33.CrossRef Gao, C., Liu, Z., & Li, A. (2014). Study of micro drilling on Pyrex glass using spark assisted chemical engraving. Micro and Nanosystems, 6(1), 26–33.CrossRef
51.
go back to reference Tandon, S., Jain, V. K., Kumar, P., & Rajurkar, K. P. (1990). Investigations into machining of composites. Precision Engineering, 12(4), 227–238.CrossRef Tandon, S., Jain, V. K., Kumar, P., & Rajurkar, K. P. (1990). Investigations into machining of composites. Precision Engineering, 12(4), 227–238.CrossRef
52.
go back to reference Manna, A., & Narang, V. (2012). A study on micro machining of e-glass–fibre–epoxy composite by ECSM process. International Journal of Advanced Manufacturing Technology, 61, 1191–1197.CrossRef Manna, A., & Narang, V. (2012). A study on micro machining of e-glass–fibre–epoxy composite by ECSM process. International Journal of Advanced Manufacturing Technology, 61, 1191–1197.CrossRef
53.
go back to reference Madhavi, B. J., & Hiremath, S. S. (2016). Investigation on machining of holes and channels on borosilicate and sodalime glass using µ-ECDM setup. Procedia Technology, 25, 1257–1264.CrossRef Madhavi, B. J., & Hiremath, S. S. (2016). Investigation on machining of holes and channels on borosilicate and sodalime glass using µ-ECDM setup. Procedia Technology, 25, 1257–1264.CrossRef
54.
go back to reference Sahasrabudhe, A. H., & Ahuja, B. B. (2014). Experimental investigations for Al2O3 ceramic micro machining using ECDM process. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), December 12–14, 2014 (pp. 182-1–182-5), IIT Guwahati, Assam, India. Sahasrabudhe, A. H., & Ahuja, B. B. (2014). Experimental investigations for Al2O3 ceramic micro machining using ECDM process. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), December 12–14, 2014 (pp. 182-1–182-5), IIT Guwahati, Assam, India.
55.
go back to reference Sarkar, B. R., Doloi, B., & Bhattacharyya, B. (2006). Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. International Journal of Advanced Manufacturing Technology, 28(9), 873–881.CrossRef Sarkar, B. R., Doloi, B., & Bhattacharyya, B. (2006). Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. International Journal of Advanced Manufacturing Technology, 28(9), 873–881.CrossRef
56.
go back to reference Doloi, B., Bhattacharyya, B., & Sorkhel, S. K. (1999). Electrochemical discharge machining of non-conducting ceramics. Defence Science Journal, 49(4), 331–338.CrossRef Doloi, B., Bhattacharyya, B., & Sorkhel, S. K. (1999). Electrochemical discharge machining of non-conducting ceramics. Defence Science Journal, 49(4), 331–338.CrossRef
57.
go back to reference Didar, T. F., Dolatabadi, A., & Wuthrich, R. (2008). Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. Journal of Micromechanics and Microengineering, 18(6), 065016.CrossRef Didar, T. F., Dolatabadi, A., & Wuthrich, R. (2008). Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. Journal of Micromechanics and Microengineering, 18(6), 065016.CrossRef
58.
go back to reference Fascio, V., Wuthrich, R., Viquerat, D., & Langen, H. (1999). 3D microstructuring of glass using electrochemical discharge machining (ECDM). In International Symposium on Micromechatronics and Human Science, IEEE (pp. 179–183). Fascio, V., Wuthrich, R., Viquerat, D., & Langen, H. (1999). 3D microstructuring of glass using electrochemical discharge machining (ECDM). In International Symposium on Micromechatronics and Human Science, IEEE (pp. 179–183).
59.
go back to reference Cao, X. D., Kim, B. H., & Chu, C. N. (2009). Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining. Precision Engineering, 33(4), 459–465.CrossRef Cao, X. D., Kim, B. H., & Chu, C. N. (2009). Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining. Precision Engineering, 33(4), 459–465.CrossRef
60.
go back to reference Lee, E. S., Howard, D., Liang, E., Collins, S. D., & Smith, R. L. (2004). Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM. Journal of Micromechanics and Microengineering, 14(4), 535–541.CrossRef Lee, E. S., Howard, D., Liang, E., Collins, S. D., & Smith, R. L. (2004). Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM. Journal of Micromechanics and Microengineering, 14(4), 535–541.CrossRef
61.
go back to reference Khairy, A. B. E., & McGeough, J. A. (1990). Die-sinking by electroerosion-dissolution machining. CIRP Annals-Manufacturing Technology, 39(1), 191–195.CrossRef Khairy, A. B. E., & McGeough, J. A. (1990). Die-sinking by electroerosion-dissolution machining. CIRP Annals-Manufacturing Technology, 39(1), 191–195.CrossRef
62.
go back to reference Pawar, P., Ballav, R., & Kumar, A. (2015). Measurement analysis in electrochemical discharge machining (ECDM) process: A literature review. Journal of Chemistry and Chemical Engineering, 9, 140–144. Pawar, P., Ballav, R., & Kumar, A. (2015). Measurement analysis in electrochemical discharge machining (ECDM) process: A literature review. Journal of Chemistry and Chemical Engineering, 9, 140–144.
63.
go back to reference Wuthrich, R., Spaelter, U., Wu, Y., & Bleuler, H. (2006). A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). Journal of Micromechanics and Microengineering, 16(9), 1891–1896.CrossRef Wuthrich, R., Spaelter, U., Wu, Y., & Bleuler, H. (2006). A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). Journal of Micromechanics and Microengineering, 16(9), 1891–1896.CrossRef
64.
go back to reference Maillard, P., Despont, B., Bleuler, H., & Wuthrich, R. (2007). Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE). Journal of Micromechanics and Microengineering, 17(7), 1343–1349.CrossRef Maillard, P., Despont, B., Bleuler, H., & Wuthrich, R. (2007). Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE). Journal of Micromechanics and Microengineering, 17(7), 1343–1349.CrossRef
65.
go back to reference Mousa, M., Allagui, A., Ng, H. D., & Wuthrich, R. (2008). The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling. Journal of Micromechanics and Microengineering, 19(1), 015010.CrossRef Mousa, M., Allagui, A., Ng, H. D., & Wuthrich, R. (2008). The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling. Journal of Micromechanics and Microengineering, 19(1), 015010.CrossRef
66.
go back to reference Mallick, B., Ali, M.N., Sarkar, B.R., Doloi, B., & Bhattacharyya, B. (2014). Parametric analysis of electrochemical discharge micro-machining process during profile generation on glass. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), December 12–14 (pp. 540-1–540-6), IIT Guwahati, Assam, India. Mallick, B., Ali, M.N., Sarkar, B.R., Doloi, B., & Bhattacharyya, B. (2014). Parametric analysis of electrochemical discharge micro-machining process during profile generation on glass. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), December 12–14 (pp. 540-1–540-6), IIT Guwahati, Assam, India.
67.
go back to reference Paul, L., & Hiremath, S. S. (2013). Response surface modelling of micro holes in electrochemical discharge machining process. Procedia Engineering, 64, 1395–1404.CrossRef Paul, L., & Hiremath, S. S. (2013). Response surface modelling of micro holes in electrochemical discharge machining process. Procedia Engineering, 64, 1395–1404.CrossRef
68.
go back to reference Coteata, M., Slatineanu, L., Dodun, O., & Ciofu, C. (2008). Electrochemical discharge machining of small diameter holes. International Journal of Material Forming, 1, 1327–1330.CrossRef Coteata, M., Slatineanu, L., Dodun, O., & Ciofu, C. (2008). Electrochemical discharge machining of small diameter holes. International Journal of Material Forming, 1, 1327–1330.CrossRef
69.
go back to reference Abou Ziki, J. D., & Wuthrich, R. (2013). Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 73, 47–54.CrossRef Abou Ziki, J. D., & Wuthrich, R. (2013). Forces exerted on the tool-electrode during constant-feed glass micro-drilling by spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 73, 47–54.CrossRef
70.
go back to reference Han, M. S., Min, B. K., & Lee, S. J. (2009). Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte. Journal of Micromechanics and Microengineering, 19(6), 065004.CrossRef Han, M. S., Min, B. K., & Lee, S. J. (2009). Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte. Journal of Micromechanics and Microengineering, 19(6), 065004.CrossRef
71.
go back to reference Rusli, M., & Furutani, K. (2012). Performance of micro-hole drilling by ultrasonic-assisted electro-chemical discharge machining. Advanced Materials Research, 445, 865–870. Rusli, M., & Furutani, K. (2012). Performance of micro-hole drilling by ultrasonic-assisted electro-chemical discharge machining. Advanced Materials Research, 445, 865–870.
72.
go back to reference Wuthrich, R., Despont, B., Maillard, P., & Bleuler, H. (2006). Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration. Journal of Micromechanics and Microengineering, 16(11), N28–N31.CrossRef Wuthrich, R., Despont, B., Maillard, P., & Bleuler, H. (2006). Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration. Journal of Micromechanics and Microengineering, 16(11), N28–N31.CrossRef
73.
go back to reference Elhami, S., & Razfar, M. R. (2017). Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining. The International Journal of Advanced Manufacturing Technology, 1–9. Elhami, S., & Razfar, M. R. (2017). Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining. The International Journal of Advanced Manufacturing Technology, 1–9.
74.
go back to reference Razfar, M. R., Behroozfar, A., & Ni, J. (2014). Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass. Precision Engineering, 38(4), 885–892.CrossRef Razfar, M. R., Behroozfar, A., & Ni, J. (2014). Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass. Precision Engineering, 38(4), 885–892.CrossRef
75.
go back to reference Cheng, C. P., Wu, K. L., Mai, C. C., Hsu, Y. S., & Yan, B. H. (2010). Magnetic field-assisted electrochemical discharge machining. Journal of Micromechanics and Microengineering, 20(7), 075019.CrossRef Cheng, C. P., Wu, K. L., Mai, C. C., Hsu, Y. S., & Yan, B. H. (2010). Magnetic field-assisted electrochemical discharge machining. Journal of Micromechanics and Microengineering, 20(7), 075019.CrossRef
76.
go back to reference Hajian, M., Razfar, M. R., & Movahed, S. (2016). An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass. Precision Engineering, 45, 322–331.CrossRef Hajian, M., Razfar, M. R., & Movahed, S. (2016). An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass. Precision Engineering, 45, 322–331.CrossRef
77.
go back to reference Chak, S. K., & Rao, P. V. (2007). Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply. International Journal of Machine Tools and Manufacture, 47(14), 2061–2070.CrossRef Chak, S. K., & Rao, P. V. (2007). Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply. International Journal of Machine Tools and Manufacture, 47(14), 2061–2070.CrossRef
78.
go back to reference Schopf, M., Beltrami, I., Boccadoro, M., Kramer, D., & Schumacher, B. (2001). ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Annals-Manufacturing Technology, 50(1), 125–128.CrossRef Schopf, M., Beltrami, I., Boccadoro, M., Kramer, D., & Schumacher, B. (2001). ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Annals-Manufacturing Technology, 50(1), 125–128.CrossRef
79.
go back to reference Kulkarni, A. V., Jain, V. K., & Misra, K. A. (2011). Electrochemical spark micromachining: Present scenario. International Journal of Automation Technology, 5(1), 52–59.CrossRef Kulkarni, A. V., Jain, V. K., & Misra, K. A. (2011). Electrochemical spark micromachining: Present scenario. International Journal of Automation Technology, 5(1), 52–59.CrossRef
80.
go back to reference Wuthrich, R., Fujisaki, K., Couthy, P., Hof, L. A., & Bleuler, H. (2005). Spark assisted chemical engraving (SACE) in microfactory. Journal of Micromechanics and Microengineering, 15(10), S276–S280.CrossRef Wuthrich, R., Fujisaki, K., Couthy, P., Hof, L. A., & Bleuler, H. (2005). Spark assisted chemical engraving (SACE) in microfactory. Journal of Micromechanics and Microengineering, 15(10), S276–S280.CrossRef
81.
go back to reference Abou Ziki, J. D., Didar, T. F., & Wuthrich, R. (2012). Micro-texturing channel surfaces on glass with spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 57, 66–72.CrossRef Abou Ziki, J. D., Didar, T. F., & Wuthrich, R. (2012). Micro-texturing channel surfaces on glass with spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 57, 66–72.CrossRef
82.
go back to reference Kulkarni, A. V. (2007). Electrochemical discharge machining process. Defence Science Journal, 57(5), 765–770.CrossRef Kulkarni, A. V. (2007). Electrochemical discharge machining process. Defence Science Journal, 57(5), 765–770.CrossRef
83.
go back to reference Kabir, M. A., Lovell, M. R., & Higgs, C. F. (2008). Utilizing the explicit finite element method for studying granular flows. Tribology Letters, 29(2), 85–94.CrossRef Kabir, M. A., Lovell, M. R., & Higgs, C. F. (2008). Utilizing the explicit finite element method for studying granular flows. Tribology Letters, 29(2), 85–94.CrossRef
84.
go back to reference Mitrovic, S. (2015). Three-dimensional nonlinear dynamic time history analysis of seismic site and structure response. Ph.D. Thesis, Faculty of Civil Engineering, University of Rijeka. Mitrovic, S. (2015). Three-dimensional nonlinear dynamic time history analysis of seismic site and structure response. Ph.D. Thesis, Faculty of Civil Engineering, University of Rijeka.
85.
go back to reference Lee, K. M., & Liu, C. H. (2012). Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers. Computers & Mathematics with Applications, 64(5), 965–977.CrossRef Lee, K. M., & Liu, C. H. (2012). Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers. Computers & Mathematics with Applications, 64(5), 965–977.CrossRef
86.
go back to reference Liu, Y. (2008). ANSYS and LS-DYNA used for structural analysis. International Journal of Computer Aided Engineering and Technology, 1(1), 31–44.CrossRef Liu, Y. (2008). ANSYS and LS-DYNA used for structural analysis. International Journal of Computer Aided Engineering and Technology, 1(1), 31–44.CrossRef
87.
go back to reference Jung, D. W. (1998). Study of dynamic explicit analysis in sheet metal forming processes using faster punch velocity and mass scaling scheme. Journal of Materials Engineering and Performance, 7(4), 479–490.MathSciNetCrossRef Jung, D. W. (1998). Study of dynamic explicit analysis in sheet metal forming processes using faster punch velocity and mass scaling scheme. Journal of Materials Engineering and Performance, 7(4), 479–490.MathSciNetCrossRef
88.
go back to reference Hu, Y., Shao, Y., Chen, Z., & Zuo, M. J. (2011). Transient meshing performance of gears with different modification coefficients and helical angles using explicit dynamic FEA. Mechanical Systems and Signal Processing, 25(5), 1786–1802.CrossRef Hu, Y., Shao, Y., Chen, Z., & Zuo, M. J. (2011). Transient meshing performance of gears with different modification coefficients and helical angles using explicit dynamic FEA. Mechanical Systems and Signal Processing, 25(5), 1786–1802.CrossRef
Metadata
Title
FEM Analysis of Different Materials Based on Explicit Dynamics ANSYS in Electrochemical Discharge Machine
Authors
Pravin Pawar
Raj Ballav
Amaresh Kumar
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8518-5_9

Premium Partners