Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Fermat Quotients and the Ankeny–Artin–Chowla Conjecture

Authors : Nic Fellini, M. Ram Murty

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the Ankeny–Artin–Chowla conjecture, which was derived in 1951 and involves four congruence relations for the class number of real quadratic fields. It fills gaps in previous proofs and extends these results, investigating a conjecture proposed by Ankeny, Artin, and Chowla. The text also explores the relationship between Fermat quotients and harmonic numbers, providing a refinement of the original conjecture and demonstrating its unconditional nature. Additionally, it discusses a generalized version of the Ankeny–Artin–Chowla conjecture and its implications, including a connection to Bernoulli numbers and the density of regular primes. The chapter offers a comprehensive treatment of the subject, including detailed proofs and computational tools, making it a valuable resource for specialists in number theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ankeny, N.C., Artin, E., Chowla, S.: The class-number of real quadratic fields. Proc. Natl. Acad. Sci. 37(8), 524–525 (1951)MathSciNetCrossRef Ankeny, N.C., Artin, E., Chowla, S.: The class-number of real quadratic fields. Proc. Natl. Acad. Sci. 37(8), 524–525 (1951)MathSciNetCrossRef
2.
go back to reference Kiselev, A.A.: An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers. Doklady Akad. Nauk SSSR (N.S.) 61, 777–779 (1948) Kiselev, A.A.: An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers. Doklady Akad. Nauk SSSR (N.S.) 61, 777–779 (1948)
3.
go back to reference Ankeny, N.C., Artin, E., Chowla, S.: The class-number of real quadratic number field. Ann. Math. 56(3), 479–493 (1952)MathSciNetCrossRef Ankeny, N.C., Artin, E., Chowla, S.: The class-number of real quadratic number field. Ann. Math. 56(3), 479–493 (1952)MathSciNetCrossRef
4.
5.
go back to reference Washington, L.: Introduction to cyclotomic fields. In: Graduate Texts in Mathematics, vol. 83. Springer, New York (1982) Washington, L.: Introduction to cyclotomic fields. In: Graduate Texts in Mathematics, vol. 83. Springer, New York (1982)
6.
go back to reference van der Poorten, A.J., te Riele, H.J.J., Williams, H.C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000. Math. Comput. 70(235), 1311–1328 (2001)MathSciNetCrossRef van der Poorten, A.J., te Riele, H.J.J., Williams, H.C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000. Math. Comput. 70(235), 1311–1328 (2001)MathSciNetCrossRef
7.
go back to reference Van Der Poorten, A.J., te Riele, H.J.J., Williams, H.C.: Corrigenda and addition to: “Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000” [Math. Comput. 70(235), 1311–1328 (2001); MR1709160 (2001j:11125)]. Math. Comput. 72(241), 521–523 (2003) Van Der Poorten, A.J., te Riele, H.J.J., Williams, H.C.: Corrigenda and addition to: “Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000” [Math. Comput. 70(235), 1311–1328 (2001); MR1709160 (2001j:11125)]. Math. Comput. 72(241), 521–523 (2003)
8.
9.
go back to reference Eisenstein, F.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden. Berichte Königl. Preuß. Akad 15, 36–42 (1850) Eisenstein, F.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden. Berichte Königl. Preuß. Akad 15, 36–42 (1850)
10.
go back to reference Yang, H., Fu, R.: The exponential diophantine equation \(x^y + y^x =z^2\) via a generalization of the Ankeny-Artin-Chowla conjecture. Int. J. Number Theory 14(5), 1223–1228 (2018)MathSciNetCrossRef Yang, H., Fu, R.: The exponential diophantine equation \(x^y + y^x =z^2\) via a generalization of the Ankeny-Artin-Chowla conjecture. Int. J. Number Theory 14(5), 1223–1228 (2018)MathSciNetCrossRef
11.
go back to reference Stephens, A.J., Williams, H.C.: Some computational results on a problem concerning powerful numbers. Math. Comput. 50(182), 619–632 (1988)MathSciNetCrossRef Stephens, A.J., Williams, H.C.: Some computational results on a problem concerning powerful numbers. Math. Comput. 50(182), 619–632 (1988)MathSciNetCrossRef
12.
go back to reference Yu, J., Yu, J.-K.: A note on a geometric analogue of Ankeny-Artin-Chowla’s conjecture. Contemp. Math. 210, 101–105 (1998)MathSciNetCrossRef Yu, J., Yu, J.-K.: A note on a geometric analogue of Ankeny-Artin-Chowla’s conjecture. Contemp. Math. 210, 101–105 (1998)MathSciNetCrossRef
13.
go back to reference Ram Murty, M.: Exponents of Class Groups of Quadratic Fields. Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, India (1999) Ram Murty, M.: Exponents of Class Groups of Quadratic Fields. Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, India (1999)
14.
go back to reference Ram Murty, M., Esmonde, J.: Problems in Algebraic Number Theory, Volume 190 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2005) Ram Murty, M., Esmonde, J.: Problems in Algebraic Number Theory, Volume 190 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2005)
17.
go back to reference Slavutskii, ISh.: Real quadratic fields and the Ankeny-Artin-Chowla conjecture. J. Math. Sci. 122(6), 3673–3678 (2004)MathSciNetCrossRef Slavutskii, ISh.: Real quadratic fields and the Ankeny-Artin-Chowla conjecture. J. Math. Sci. 122(6), 3673–3678 (2004)MathSciNetCrossRef
Metadata
Title
Fermat Quotients and the Ankeny–Artin–Chowla Conjecture
Authors
Nic Fellini
M. Ram Murty
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_1

Premium Partner