Skip to main content
Top

2019 | OriginalPaper | Chapter

Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach

Authors : Zafer Cömert, Adnan Fatih Kocamaz

Published in: Software Engineering and Algorithms in Intelligent Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electronic fetal monitoring (EFM) device which is used to record Fetal Heart Rate (FHR) and Uterine Contraction (UC) signals simultaneously is one of the significant tools in terms of the present obstetric clinical applications. In clinical practice, EFM traces are routinely evaluated with visual inspection by observers. For this reason, such a subjective interpretation has been caused various conflicts among observers to arise. Although the existing of international guidelines for ensuring more consistent assessment, the automated FHR analysis has been adopted as the most promising solution. In this study, an innovative approach based on deep convolutional neural network (DCNN) is proposed to classify FHR signals as normal and abnormal. The proposed method composes of three stages. FHR signals are passed through a set of preprocessing procedures in order to ensure more meaningful input images, firstly. Then, a visual representation of time-frequency information, spectrograms are obtained with the help of the Short Time Fourier Transform (STFT). Finally, DCNN method is utilized to classify FHR signals. To this end, the colored spectrograms images are used to train the network. In order to evaluate the proposed model, we conducted extensive experiments on the open CTU-UHB database considering the area under the receiver operating characteristic curve and other several performance metrics derived from the confusion matrix. Consequently, we achieved encouraging results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Murray, H.: Antenatal foetal heart monitoring. Best Pract. Res. Clin. Obstet. Gynaecol. 38, 2–11 (2017)CrossRef Murray, H.: Antenatal foetal heart monitoring. Best Pract. Res. Clin. Obstet. Gynaecol. 38, 2–11 (2017)CrossRef
2.
go back to reference Brown, R., Wijekoon, J.H.B., Fernando, A., Johnstone, E.D., Heazell, A.E.P.: Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management. Med. Hypotheses 83, 410–417 (2014)CrossRef Brown, R., Wijekoon, J.H.B., Fernando, A., Johnstone, E.D., Heazell, A.E.P.: Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management. Med. Hypotheses 83, 410–417 (2014)CrossRef
3.
go back to reference van Geijn, H.P.: 2 Developments in CTG analysis. Baillieres Clin. Obstet. Gynaecol. 10, 185–209 (1996)CrossRef van Geijn, H.P.: 2 Developments in CTG analysis. Baillieres Clin. Obstet. Gynaecol. 10, 185–209 (1996)CrossRef
4.
go back to reference Ayres-de-Campos, D., Spong, C.Y., Chandraharan, E.: FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 131, 13–24 (2015)CrossRef Ayres-de-Campos, D., Spong, C.Y., Chandraharan, E.: FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 131, 13–24 (2015)CrossRef
5.
go back to reference Tongsong, T., Iamthongin, A., Wanapirak, C., Piyamongkol, W., Sirichotiyakul, S., Boonyanurak, P., Tatiyapornkul, T., Neelasri, C.: Accuracy of fetal heart-rate variability interpretation by obstetricians using the criteria of the National Institute of Child Health and Human Development compared with computer-aided interpretation. J. Obstet. Gynaecol. Res. 31, 68–71 (2005)CrossRef Tongsong, T., Iamthongin, A., Wanapirak, C., Piyamongkol, W., Sirichotiyakul, S., Boonyanurak, P., Tatiyapornkul, T., Neelasri, C.: Accuracy of fetal heart-rate variability interpretation by obstetricians using the criteria of the National Institute of Child Health and Human Development compared with computer-aided interpretation. J. Obstet. Gynaecol. Res. 31, 68–71 (2005)CrossRef
6.
go back to reference Czabanski, R., Jezewski, J., Matonia, A., Jezewski, M.: Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Expert Syst. Appl. 39, 11846–11860 (2012)CrossRef Czabanski, R., Jezewski, J., Matonia, A., Jezewski, M.: Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Expert Syst. Appl. 39, 11846–11860 (2012)CrossRef
7.
go back to reference Garabedian, C., Butruille, L., Drumez, E., Schreiber, E.S., Bartolo, S., Bleu, G., Mesdag, V., Deruelle, P., De Jonckheere, J., Houfflin-Debarge, V.: Inter-observer reliability of 4 fetal heart rate classifications. J. Gynecol. Obstet. Hum. Reprod. 46, 131–135 (2017)CrossRef Garabedian, C., Butruille, L., Drumez, E., Schreiber, E.S., Bartolo, S., Bleu, G., Mesdag, V., Deruelle, P., De Jonckheere, J., Houfflin-Debarge, V.: Inter-observer reliability of 4 fetal heart rate classifications. J. Gynecol. Obstet. Hum. Reprod. 46, 131–135 (2017)CrossRef
8.
go back to reference Palomäki, O., Luukkaala, T., Luoto, R., Tuimala, R.: Intrapartum cardiotocography: the dilemma of interpretational variation. J. Perinat. Med. 34, 298–302 (2006)CrossRef Palomäki, O., Luukkaala, T., Luoto, R., Tuimala, R.: Intrapartum cardiotocography: the dilemma of interpretational variation. J. Perinat. Med. 34, 298–302 (2006)CrossRef
9.
go back to reference Cömert, Z., Kocamaz, A.F.: Novel software for comprehensive analysis of cardiotocography signals CTG-OAS. In: KARCI, A. (ed.) International Conference on Artificial Intelligence and Data Processing (IDAP17), pp. 1–6. IEEE, Malatya (2017) Cömert, Z., Kocamaz, A.F.: Novel software for comprehensive analysis of cardiotocography signals CTG-OAS. In: KARCI, A. (ed.) International Conference on Artificial Intelligence and Data Processing (IDAP17), pp. 1–6. IEEE, Malatya (2017)
10.
go back to reference Bernardes, J., Ayres-de-Campos, D., Costa-Pereira, A., Pereira-Leite, L., Garrido, A.: Objective computerized fetal heart rate analysis. Int. J. Gynecol. Obstet. 62, 141–147 (1998)CrossRef Bernardes, J., Ayres-de-Campos, D., Costa-Pereira, A., Pereira-Leite, L., Garrido, A.: Objective computerized fetal heart rate analysis. Int. J. Gynecol. Obstet. 62, 141–147 (1998)CrossRef
11.
go back to reference Warrick, P., Hamilton, E., Macieszczak, M.: Neural network based detection of fetal heart rate patterns. In: IEEE International Joint Conference on Neural Networks, pp. 2400–2405 (2005) Warrick, P., Hamilton, E., Macieszczak, M.: Neural network based detection of fetal heart rate patterns. In: IEEE International Joint Conference on Neural Networks, pp. 2400–2405 (2005)
12.
go back to reference Cömert, Z., Kocamaz, A.F.: Evaluation of fetal distress diagnosis during delivery stages based on linear and nonlinear features of fetal heart rate for neural network community. Int. J. Comput. Appl. 156, 26–31 (2016) Cömert, Z., Kocamaz, A.F.: Evaluation of fetal distress diagnosis during delivery stages based on linear and nonlinear features of fetal heart rate for neural network community. Int. J. Comput. Appl. 156, 26–31 (2016)
13.
go back to reference Magenes, G., Pedrinazzi, L., Signorini, M.G.: Identification of fetal sufferance antepartum through a multiparametric analysis and a support vector machine. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 462–465 (2004) Magenes, G., Pedrinazzi, L., Signorini, M.G.: Identification of fetal sufferance antepartum through a multiparametric analysis and a support vector machine. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 462–465 (2004)
14.
go back to reference Monteiro-Santos, J., Gonçalves, H., Bernardes, J., Antunes, L., Nozari, M., Costa-Santos, C.: Entropy and compression capture different complexity features: the case of fetal heart rate. Entropy 19, 688 (2017)CrossRef Monteiro-Santos, J., Gonçalves, H., Bernardes, J., Antunes, L., Nozari, M., Costa-Santos, C.: Entropy and compression capture different complexity features: the case of fetal heart rate. Entropy 19, 688 (2017)CrossRef
15.
go back to reference Cömert, Z., Kocamaz, A.F.: Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine. In: 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2017) Cömert, Z., Kocamaz, A.F.: Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine. In: 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2017)
16.
go back to reference Cömert, Z., Kocamaz, A.F.: A study based on gray level co-occurrence matrix and neural network community for determination of hypoxic fetuses. In: International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 569–573. TR (2016) Cömert, Z., Kocamaz, A.F.: A study based on gray level co-occurrence matrix and neural network community for determination of hypoxic fetuses. In: International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 569–573. TR (2016)
17.
go back to reference Cömert, Z., Kocamaz, A.F.: A study of artificial neural network training algorithms for classification of cardiotocography signals. Bitlis Eren Univ. J. Sci. Technol. 7, 93–103 (2017)CrossRef Cömert, Z., Kocamaz, A.F.: A study of artificial neural network training algorithms for classification of cardiotocography signals. Bitlis Eren Univ. J. Sci. Technol. 7, 93–103 (2017)CrossRef
18.
go back to reference Spilka, J., Frecon, J., Leonarduzzi, R., Pustelnik, N., Abry, P., Doret, M.: Sparse support vector machine for intrapartum fetal heart rate classification. IEEE J. Biomed. Health Inform. 21(3), 664–671 (2016)CrossRef Spilka, J., Frecon, J., Leonarduzzi, R., Pustelnik, N., Abry, P., Doret, M.: Sparse support vector machine for intrapartum fetal heart rate classification. IEEE J. Biomed. Health Inform. 21(3), 664–671 (2016)CrossRef
19.
go back to reference Cömert, Z., Kocamaz, A.F., Gungor, S.: Cardiotocography signals with artificial neural network and extreme learning machine. In: 24th Signal Processing and Communication Application Conference (SIU) (2016) Cömert, Z., Kocamaz, A.F., Gungor, S.: Cardiotocography signals with artificial neural network and extreme learning machine. In: 24th Signal Processing and Communication Application Conference (SIU) (2016)
20.
go back to reference Sahin, H., Subasi, A.: Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques. Appl. Soft Comput. 33, 231–238 (2015)CrossRef Sahin, H., Subasi, A.: Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques. Appl. Soft Comput. 33, 231–238 (2015)CrossRef
21.
go back to reference Cömert, Z., Kocamaz, A.F.: Comparison of machine learning techniques for fetal heart rate classification. Acta Phys. Pol. A 132, 451–454 (2017)CrossRef Cömert, Z., Kocamaz, A.F.: Comparison of machine learning techniques for fetal heart rate classification. Acta Phys. Pol. A 132, 451–454 (2017)CrossRef
22.
go back to reference Bursa, M., Lhotska, L.: The use of convolutional neural networks in biomedical data processing. In: Bursa, M., Holzinger, A., Renda, M.E., Khuri, S. (eds.) Proceedings of Information Technology in Bio- and Medical Informatics: 8th International Conference, ITBAM 2017, Lyon, France, 28–31 August 2017, pp. 100–119. Springer, Cham (2017)CrossRef Bursa, M., Lhotska, L.: The use of convolutional neural networks in biomedical data processing. In: Bursa, M., Holzinger, A., Renda, M.E., Khuri, S. (eds.) Proceedings of Information Technology in Bio- and Medical Informatics: 8th International Conference, ITBAM 2017, Lyon, France, 28–31 August 2017, pp. 100–119. Springer, Cham (2017)CrossRef
23.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105. Curran Associates, Inc., USA (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105. Curran Associates, Inc., USA (2012)
24.
go back to reference Chudáček, V., Spilka, J., Burša, M., Janků, P., Hruban, L., Huptych, M., Lhotská, L.: Open access intrapartum CTG database. BMC Pregnancy Childbirth 14, 16 (2014)CrossRef Chudáček, V., Spilka, J., Burša, M., Janků, P., Hruban, L., Huptych, M., Lhotská, L.: Open access intrapartum CTG database. BMC Pregnancy Childbirth 14, 16 (2014)CrossRef
25.
go back to reference Cesarelli, M., Romano, M., Bifulco, P., Fedele, F., Bracale, M.: An algorithm for the recovery of fetal heart rate series from CTG data. Comput. Biol. Med. 37, 663–669 (2007)CrossRef Cesarelli, M., Romano, M., Bifulco, P., Fedele, F., Bracale, M.: An algorithm for the recovery of fetal heart rate series from CTG data. Comput. Biol. Med. 37, 663–669 (2007)CrossRef
26.
go back to reference Spilka, J., Georgoulas, G., Karvelis, P., Oikonomou, V.P., Chudáček, V., Stylios, C., Lhotská, L., Jankru, P.: Automatic evaluation of FHR recordings from CTU-UHB CTG database. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) Proceedings of Information Technology in Bio- and Medical Informatics: 4th International Conference, ITBAM 2013, Prague, Czech Republic, 28 August 2013, pp. 47–61. Springer, Heidelberg (2013)CrossRef Spilka, J., Georgoulas, G., Karvelis, P., Oikonomou, V.P., Chudáček, V., Stylios, C., Lhotská, L., Jankru, P.: Automatic evaluation of FHR recordings from CTU-UHB CTG database. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) Proceedings of Information Technology in Bio- and Medical Informatics: 4th International Conference, ITBAM 2013, Prague, Czech Republic, 28 August 2013, pp. 47–61. Springer, Heidelberg (2013)CrossRef
27.
go back to reference Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice-Hall Inc., Upper Saddle River (1989)MATH Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice-Hall Inc., Upper Saddle River (1989)MATH
28.
go back to reference Romano, M., Faiella, G., Bifulco, P., D’Addio, G., Clemente, F., Cesarelli, M.: Outliers detection and processing in CTG monitoring. In: Roa Romero, L.M. (ed.) XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, MEDICON 2013, Seville, Spain, 25–28 September 2013, pp. 651–654. Springer, Cham (2014) Romano, M., Faiella, G., Bifulco, P., D’Addio, G., Clemente, F., Cesarelli, M.: Outliers detection and processing in CTG monitoring. In: Roa Romero, L.M. (ed.) XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, MEDICON 2013, Seville, Spain, 25–28 September 2013, pp. 651–654. Springer, Cham (2014)
29.
go back to reference Nawab, S., Quatieri, T., Lim, J.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. 31, 986–998 (1983)CrossRef Nawab, S., Quatieri, T., Lim, J.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. 31, 986–998 (1983)CrossRef
30.
go back to reference Romano, M., Iuppariello, L., Ponsiglione, A.M., Improta, G., Bifulco, P., Cesarelli, M.: Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput. Math Methods Med. 2016, 1–12 (2016)CrossRef Romano, M., Iuppariello, L., Ponsiglione, A.M., Improta, G., Bifulco, P., Cesarelli, M.: Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput. Math Methods Med. 2016, 1–12 (2016)CrossRef
31.
go back to reference Groome, L.J., Mooney, D.M., Bentz, L.S., Singh, K.P.: Spectral analysis of heart rate variability during quiet sleep in normal human fetuses between 36 and 40 weeks of gestation. Early Hum. Dev. 38, 1–9 (1994)CrossRef Groome, L.J., Mooney, D.M., Bentz, L.S., Singh, K.P.: Spectral analysis of heart rate variability during quiet sleep in normal human fetuses between 36 and 40 weeks of gestation. Early Hum. Dev. 38, 1–9 (1994)CrossRef
32.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
33.
go back to reference Yu, Y., Lin, H., Meng, J., Wei, X., Guo, H., Zhao, Z.: Deep transfer learning for modality classification of medical images. Information 8(3), 91 (2017)CrossRef Yu, Y., Lin, H., Meng, J., Wei, X., Guo, H., Zhao, Z.: Deep transfer learning for modality classification of medical images. Information 8(3), 91 (2017)CrossRef
34.
go back to reference Subha, V., Murugan, D.: Genetic Algorithm based feature subset selection for fetal state classification. J. Commun. Technol. Electron. Comput. Sci. 2, 13–17 (2015)CrossRef Subha, V., Murugan, D.: Genetic Algorithm based feature subset selection for fetal state classification. J. Commun. Technol. Electron. Comput. Sci. 2, 13–17 (2015)CrossRef
Metadata
Title
Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach
Authors
Zafer Cömert
Adnan Fatih Kocamaz
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91186-1_25

Premium Partner