Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

10-01-2019 | Focus | Issue 8/2019

Soft Computing 8/2019

FFcPsA: a fast finite conventional state using prefix pattern gene search algorithm for large sequence identification

Journal:
Soft Computing > Issue 8/2019
Authors:
A. Surendar, M. Arun, A. Mahabub Basha
Important notes
Communicated by P. Pandian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Gnomic information continues to flood, and this trend comes in the wake of the life sciences’ rapid development. The eventuality has been an increase in the demand for more scalable and faster searching techniques, with the demand also proving urgent. Whereas a faster algorithm could be used to search biomedical data, the process of making gene prediction remains challenging. Particularly, the searching of biomedical data has been affirmed to be a simple gradient base approach. Therefore, indexing has been investigated with the aim of achieving a fast finite conventional rate. With biomedical expressed datasheet at hand, data-based large sequence identification has been achieved via the prefix pattern gene search algorithm. Imperative to note is that real-value expression matrices can replace microarray experimental gene expression data. To ensure that the genomic dataset’s querying exhibits reductions in the overall retrieval time and that the time used for pattern array building is sped up, parallel partitioned methods have gained application. Notably, the central merit accruing from the latter method is that the majority of unrelated sequences are skipped. Also, these methods ensure that the real search problems are only decomposed to establish original database fractions. To ensure that the establishment of the gene’s hidden information and similar characteristics is enhanced, large genetic data patterns are required.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2019

Soft Computing 8/2019 Go to the issue

Premium Partner

    Image Credits