Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Fiber-Shaped Polymer Solar Cell

Author : Huisheng Peng

Published in: Fiber-Shaped Energy Harvesting and Storage Devices

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, fiber-shaped solar cells are materialized in two types of solar cells, the polymer solar cell (PSC) and the dye-sensitized solar cell (DSC), whose structures are technically feasible for transforming into one-dimensional configuration. In this chapter, we discuss the polymer solar cell first including its developing history and working mechanisms. It is widely acknowledged that the electrode plays a pivotal role in the performance of solar cells. On this account, we proceed from remolding different materials into fiber shape as electrodes and shed light on their impact on flexibility, stability, and power conversion efficiency (PCE) of the polymer solar cell. Moreover, we present our attempts towards application pertaining to wearable devices. Specifically, we fabricated the stretchable polymer solar cells and integrated the solar cell with supercapacitors, which is discussed in detail in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tang CW (1979) Multilayer organic photovoltaic elements. US Patent 4,164,431 Tang CW (1979) Multilayer organic photovoltaic elements. US Patent 4,164,431
2.
go back to reference Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1993) Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. Synth Met 59(3):333–352CrossRef Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1993) Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. Synth Met 59(3):333–352CrossRef
3.
go back to reference You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRef You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRef
4.
go back to reference Chen C-C, Chang W-H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11 %. Adv Mater 26(32):5670–5677CrossRef Chen C-C, Chang W-H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11 %. Adv Mater 26(32):5670–5677CrossRef
5.
go back to reference Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338CrossRef Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338CrossRef
7.
go back to reference Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRef Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRef
8.
go back to reference Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476CrossRef Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476CrossRef
9.
go back to reference Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef
10.
go back to reference Wudl F, Srdanov G (1993) Conducting polymer formed of poly (2-methoxy, 5-(2′-ethyl-hexyloxy)-p-phenylenevinylene). US Patent 5,189,136 Wudl F, Srdanov G (1993) Conducting polymer formed of poly (2-methoxy, 5-(2′-ethyl-hexyloxy)-p-phenylenevinylene). US Patent 5,189,136
11.
go back to reference Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRef Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRef
12.
go back to reference Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRef Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRef
13.
go back to reference Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69(26):4108–4110CrossRef Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69(26):4108–4110CrossRef
14.
go back to reference Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef
15.
go back to reference Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRef Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRef
16.
go back to reference Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80(7):1288–1290CrossRef Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80(7):1288–1290CrossRef
17.
go back to reference Za T, Zhang W, Zhang Z, Qian D, Huang Y, Hou J, Li Y (2012) High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv Mater 24(11):1476–1481CrossRef Za T, Zhang W, Zhang Z, Qian D, Huang Y, Hou J, Li Y (2012) High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv Mater 24(11):1476–1481CrossRef
18.
go back to reference Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476–1482CrossRef Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476–1482CrossRef
19.
go back to reference Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 23(14):1679–1683CrossRef Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 23(14):1679–1683CrossRef
20.
go back to reference Colsmann A, Reinhard M, Kwon T-H, Kayser C, Nickel F, Czolk J, Lemmer U, Clark N, Jasieniak J, Holmes AB, Jones D (2012) Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Sol Energy Mater Sol Cells 98:118–123CrossRef Colsmann A, Reinhard M, Kwon T-H, Kayser C, Nickel F, Czolk J, Lemmer U, Clark N, Jasieniak J, Holmes AB, Jones D (2012) Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Sol Energy Mater Sol Cells 98:118–123CrossRef
21.
go back to reference Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369CrossRef Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369CrossRef
22.
go back to reference Jung YS, Hwang Y-H, Javey A, Pyo M (2011) PCBM-grafted MWNT for enhanced electron transport in polymer solar cells. J Electrochem Soc 158(3):A237–A240CrossRef Jung YS, Hwang Y-H, Javey A, Pyo M (2011) PCBM-grafted MWNT for enhanced electron transport in polymer solar cells. J Electrochem Soc 158(3):A237–A240CrossRef
23.
go back to reference Höfle S, Bruns M, Strässle S, Feldmann C, Lemmer U, Colsmann A (2013) Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes. Adv Mater 25(30):4113–4116CrossRef Höfle S, Bruns M, Strässle S, Feldmann C, Lemmer U, Colsmann A (2013) Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes. Adv Mater 25(30):4113–4116CrossRef
24.
go back to reference Bindl DJ, Ferguson AJ, Wu M-Y, Kopidakis N, Blackburn JL, Arnold MS (2013) Free carrier generation and recombination in polymer wrapped semiconducting carbon nanotube films and heterojunctions. J Phys Chem Lett 4(21):3550–3559 Bindl DJ, Ferguson AJ, Wu M-Y, Kopidakis N, Blackburn JL, Arnold MS (2013) Free carrier generation and recombination in polymer wrapped semiconducting carbon nanotube films and heterojunctions. J Phys Chem Lett 4(21):3550–3559
25.
go back to reference Stylianakis MM, Kymakis E (2012) Efficiency enhancement of organic photovoltaics by addition of carbon nanotubes into both active and hole transport layer. Appl Phys Lett 100(9):093301CrossRef Stylianakis MM, Kymakis E (2012) Efficiency enhancement of organic photovoltaics by addition of carbon nanotubes into both active and hole transport layer. Appl Phys Lett 100(9):093301CrossRef
26.
go back to reference Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18(6):789–794CrossRef Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18(6):789–794CrossRef
27.
go back to reference Yun J-J, Jung H-S, Kim S-H, Han E-M, Vaithianathan V, Jenekhe SA (2005) Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48 %. Appl Phys Lett 87(12):123102CrossRef Yun J-J, Jung H-S, Kim S-H, Han E-M, Vaithianathan V, Jenekhe SA (2005) Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48 %. Appl Phys Lett 87(12):123102CrossRef
28.
go back to reference Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y (2004) Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl Phys Lett 84(10):1653–1655CrossRef Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y (2004) Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl Phys Lett 84(10):1653–1655CrossRef
29.
go back to reference Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235CrossRefMATH Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235CrossRefMATH
30.
go back to reference Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z, Cao A, Huang C (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034 Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z, Cao A, Huang C (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034
31.
go back to reference Liu D, Li Y, Zhao S, Cao A, Zhang C, Liu Z, Bian Z, Liu Z, Huang C (2013) Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Adv 3(33):13720–13727CrossRef Liu D, Li Y, Zhao S, Cao A, Zhang C, Liu Z, Bian Z, Liu Z, Huang C (2013) Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Adv 3(33):13720–13727CrossRef
32.
go back to reference Liu J, Namboothiry MAG, Carroll DL (2007) Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett 90(13):133515CrossRef Liu J, Namboothiry MAG, Carroll DL (2007) Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett 90(13):133515CrossRef
33.
go back to reference Bedeloglu A, Demir A, Bozkurt Y, Sariciftci NS (2010) A photovoltaic fiber design for smart textiles. Text Res J 80(11):1065–1074CrossRef Bedeloglu A, Demir A, Bozkurt Y, Sariciftci NS (2010) A photovoltaic fiber design for smart textiles. Text Res J 80(11):1065–1074CrossRef
34.
go back to reference Chen T, Qiu L, Li H, Peng H (2012) Polymer photovoltaic wires based on aligned carbon nanotube fibers. J Mater Chem 22(44):23655–23658CrossRef Chen T, Qiu L, Li H, Peng H (2012) Polymer photovoltaic wires based on aligned carbon nanotube fibers. J Mater Chem 22(44):23655–23658CrossRef
35.
go back to reference Zhang Z, Yang Z, Wu Z, Guan G, Pan S, Zhang Y, Li H, Deng J, Sun B, Peng H (2014) Weaving efficient polymer solar cell wires into flexible power textiles. Adv Energy Mater 4(11):1301750 Zhang Z, Yang Z, Wu Z, Guan G, Pan S, Zhang Y, Li H, Deng J, Sun B, Peng H (2014) Weaving efficient polymer solar cell wires into flexible power textiles. Adv Energy Mater 4(11):1301750
Metadata
Title
Fiber-Shaped Polymer Solar Cell
Author
Huisheng Peng
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45744-3_4