Skip to main content
Top

2011 | OriginalPaper | Chapter

Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery

Authors : E. Borowiak-Palen, C. Tripisciano, M. Rümmeli, S. Costa, X. Chen, R. J. Kalenczuk

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology is a broad scientific field but one of the most explored materials in nanotechnology is carbon nanotube (CNT). A large proportion of research on CNTs is focused on their huge potential for biomedical applications. Within this context, the synthesis of carbon nanotubes filled with magnetic materials has been widely investigated, especially with iron due to its excellent ferromagnetic characteristics. Pure iron-filled carbon nanotubes (Fe-CNT) can be prepared following diverse routes. Here, an overview of the different preparation routes of Fe-CNT, using the chemical vapour deposition (CVD) synthesis method will be presented. Several working parameters were varied and investigated, the most significant being the pressure of the system, the iron and the carbon sources. The consequence of these modifications is reflected in the structure of the final material, which varies in respect of the amount of iron encapsulated in the cavity, tube diameter and the number of graphitic walls forming the CNT. The filling of hollow CNT through wet chemistry reactions (as a post-synthesis route) and CVD process (filling during the synthesis of CNTs) will also be addressed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ajima, K., et al.: Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2, 475–480 (2005)CrossRef Ajima, K., et al.: Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2, 475–480 (2005)CrossRef
2.
go back to reference Ajima, K., et al.: Optimum hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 5773–5778 (2006a)CrossRef Ajima, K., et al.: Optimum hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 5773–5778 (2006a)CrossRef
3.
go back to reference Ajima, K., et al.: Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 19097–19099 (2006b)CrossRef Ajima, K., et al.: Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 19097–19099 (2006b)CrossRef
4.
go back to reference Bianco, A., et al.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–7 (2005)CrossRef Bianco, A., et al.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–7 (2005)CrossRef
5.
go back to reference Borowiak-Palen, E.: Single-walled carbon nanotubes as nanotest tubes. Physica Status Solidi B 244(11), 4311–4314 (2007)CrossRef Borowiak-Palen, E.: Single-walled carbon nanotubes as nanotest tubes. Physica Status Solidi B 244(11), 4311–4314 (2007)CrossRef
6.
go back to reference Chin, S.-F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232, 1236–1244 (2007)CrossRef Chin, S.-F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232, 1236–1244 (2007)CrossRef
7.
go back to reference Clare, B.W., Kepert, D.L.: Opening of carbon nanotubes by addition of oxygen. Inorg. Chim. Acta 343, 1–17 (2003)CrossRef Clare, B.W., Kepert, D.L.: Opening of carbon nanotubes by addition of oxygen. Inorg. Chim. Acta 343, 1–17 (2003)CrossRef
8.
go back to reference Costa, S., Borowiak-Palen, E.: Comparative study on homogeneity, filling ration and purity of iron filled multiwalled carbon nanostructures. Eur. Phys. J. B (2010). doi:10.1140/epjb/e2010-00070-1 Costa, S., Borowiak-Palen, E.: Comparative study on homogeneity, filling ration and purity of iron filled multiwalled carbon nanostructures. Eur. Phys. J. B (2010). doi:10.​1140/​epjb/​e2010-00070-1
9.
go back to reference Costa, S., Borowiak-Palen, E., Bachmatiuk, A., Rummeli, M., Gemming, T., Kalenczuk, R.: Filling of carbon nanotubes for bio-applications. Physica Status Solidi B 244, 4315–4318 (2007)CrossRef Costa, S., Borowiak-Palen, E., Bachmatiuk, A., Rummeli, M., Gemming, T., Kalenczuk, R.: Filling of carbon nanotubes for bio-applications. Physica Status Solidi B 244, 4315–4318 (2007)CrossRef
10.
go back to reference Costa, S., et al.: Iron filled carbon nanostructures from different precursors. Energy Convers. Manag. 49(9), 2483–2486 (2008)CrossRef Costa, S., et al.: Iron filled carbon nanostructures from different precursors. Energy Convers. Manag. 49(9), 2483–2486 (2008)CrossRef
11.
go back to reference Deng, X., et al.: The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47, 1421–1428 (2009)CrossRef Deng, X., et al.: The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47, 1421–1428 (2009)CrossRef
12.
go back to reference Dhar, S., et al.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008)CrossRef Dhar, S., et al.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008)CrossRef
13.
go back to reference Dumortier, H., et al.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528 (2006)CrossRef Dumortier, H., et al.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528 (2006)CrossRef
14.
go back to reference Eastman, A.: Interstrand cross-links and sequence specificity in the reaction of cis-dichloro(ethylenediamine)platinum (II) with DNA. Biochemistry 25, 5027–5032 (1986a)CrossRef Eastman, A.: Interstrand cross-links and sequence specificity in the reaction of cis-dichloro(ethylenediamine)platinum (II) with DNA. Biochemistry 25, 5027–5032 (1986a)CrossRef
15.
go back to reference Eastman, A.: Reevaluation of interaction of cis-dichloro(ethylenediamineplatinum(II) with DNA. Biochemistry 25, 3912–3915 (1986b)CrossRef Eastman, A.: Reevaluation of interaction of cis-dichloro(ethylenediamineplatinum(II) with DNA. Biochemistry 25, 3912–3915 (1986b)CrossRef
16.
go back to reference Feazell, R.P., et al.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129(27), 8438–8439 (2007)CrossRef Feazell, R.P., et al.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129(27), 8438–8439 (2007)CrossRef
17.
go back to reference Geng, F., Cong, H.: Fe-filled carbon nanotube array with high coercivity. Physica B Condens. Matter 382(1–2), 300–304 (2006)CrossRef Geng, F., Cong, H.: Fe-filled carbon nanotube array with high coercivity. Physica B Condens. Matter 382(1–2), 300–304 (2006)CrossRef
18.
go back to reference Hampel, S., et al.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44(11), 2316–2322 (2006)CrossRef Hampel, S., et al.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44(11), 2316–2322 (2006)CrossRef
19.
go back to reference Hampel, S., et al.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)CrossRef Hampel, S., et al.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)CrossRef
20.
go back to reference Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–99 (2005)CrossRef Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–99 (2005)CrossRef
21.
go back to reference Hildebrandt, B., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)CrossRef Hildebrandt, B., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)CrossRef
22.
go back to reference Hilder, T.A., et al.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)CrossRef Hilder, T.A., et al.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)CrossRef
23.
go back to reference Hu, C.-C., Su, J.-H., Wen, T.-C.: Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J. Phys. Chem. Solids 68(12), 2353–2362 (2007)CrossRef Hu, C.-C., Su, J.-H., Wen, T.-C.: Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J. Phys. Chem. Solids 68(12), 2353–2362 (2007)CrossRef
24.
go back to reference Iijima, S., et al.: Carbon nanotube technology. Nec Tech. J. 2(1), 52–55 (2007) Iijima, S., et al.: Carbon nanotube technology. Nec Tech. J. 2(1), 52–55 (2007)
25.
go back to reference Jain, D., Wilhelm, R.: An easy way to produce [alpha]-iron filled multiwalled carbon nanotubes. Carbon 45(3), 602–606 (2007)CrossRef Jain, D., Wilhelm, R.: An easy way to produce [alpha]-iron filled multiwalled carbon nanotubes. Carbon 45(3), 602–606 (2007)CrossRef
26.
go back to reference Jorge, J., et al.: Preparation and characterization of [alpha]-Fe nanowires located inside double wall carbon nanotubes. Chem. Phys. Lett. 457(4–6), 347–351 (2008)CrossRef Jorge, J., et al.: Preparation and characterization of [alpha]-Fe nanowires located inside double wall carbon nanotubes. Chem. Phys. Lett. 457(4–6), 347–351 (2008)CrossRef
27.
go back to reference Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRef Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRef
28.
go back to reference Kim, H., Sigmund, W.: Iron particles in carbon nanotubes. Carbon 43(8), 1743–1748 (2005)CrossRef Kim, H., Sigmund, W.: Iron particles in carbon nanotubes. Carbon 43(8), 1743–1748 (2005)CrossRef
29.
go back to reference Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2006a)CrossRef Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2006a)CrossRef
30.
go back to reference Lacerda, L., et al.: Cell penetrating CNTs for delivery of therapeutics. Nanotoday 2, 38–43 (2007)CrossRef Lacerda, L., et al.: Cell penetrating CNTs for delivery of therapeutics. Nanotoday 2, 38–43 (2007)CrossRef
31.
go back to reference Leonhardt, A., et al.: Synthesis and properties of filled carbon nanotubes. Diam. Relat. Mater. 12(3–7), 790–793 (2003)CrossRef Leonhardt, A., et al.: Synthesis and properties of filled carbon nanotubes. Diam. Relat. Mater. 12(3–7), 790–793 (2003)CrossRef
32.
go back to reference Levi-Polyachenko, N.H., et al.: Multi-walled carbon nanotubes increase the efficiency of hyperthermic chemotherapy. Nanotech 2, 57–60 (2008) Levi-Polyachenko, N.H., et al.: Multi-walled carbon nanotubes increase the efficiency of hyperthermic chemotherapy. Nanotech 2, 57–60 (2008)
33.
go back to reference Liu, Z.-J., et al.: Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synth. Met. 128(2), 191–195 (2002)CrossRef Liu, Z.-J., et al.: Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synth. Met. 128(2), 191–195 (2002)CrossRef
34.
go back to reference Liu, Z., et al.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)CrossRef Liu, Z., et al.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)CrossRef
35.
go back to reference Lu, Y., Zhu, Z., Liu, Z.: Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43(2), 369–374 (2005)CrossRef Lu, Y., Zhu, Z., Liu, Z.: Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43(2), 369–374 (2005)CrossRef
36.
go back to reference Mohlala, M.S., Liu, X.-Y., Coville, N.J.: Synthesis of multi-walled carbon nanotubes catalyzed by substituted ferrocenes. J. Organomet. Chem. 691(22), 4768–4772 (2006)CrossRef Mohlala, M.S., Liu, X.-Y., Coville, N.J.: Synthesis of multi-walled carbon nanotubes catalyzed by substituted ferrocenes. J. Organomet. Chem. 691(22), 4768–4772 (2006)CrossRef
37.
go back to reference Muller, C., Leonhardt, A., Kutz, A.C., Büchner, B.: Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene. J. Phys. Chem. C 113, 2736–2740 (2009)CrossRef Muller, C., Leonhardt, A., Kutz, A.C., Büchner, B.: Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene. J. Phys. Chem. C 113, 2736–2740 (2009)CrossRef
38.
go back to reference Müller, C., et al.: Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon 44(9), 1746–1753 (2006)CrossRef Müller, C., et al.: Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon 44(9), 1746–1753 (2006)CrossRef
39.
go back to reference Qiu, J., et al.: CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon 44(12), 2565–2568 (2006)CrossRef Qiu, J., et al.: CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon 44(12), 2565–2568 (2006)CrossRef
40.
go back to reference Raymundo-Piñero, E., et al.: A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chem. Phys. Lett. 412(1–3), 184–189 (2005)CrossRef Raymundo-Piñero, E., et al.: A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chem. Phys. Lett. 412(1–3), 184–189 (2005)CrossRef
41.
go back to reference Rosenberg, B.: Some biological effects of platinum compounds. Platinum Metals Rev, 15, 42-51 (1971) Rosenberg, B.: Some biological effects of platinum compounds. Platinum Metals Rev, 15, 42-51 (1971)
42.
go back to reference Sano, N., et al.: Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11), 2159–2162 (2003)CrossRef Sano, N., et al.: Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11), 2159–2162 (2003)CrossRef
43.
go back to reference Seifu, D., et al.: Chemical method of filling carbon nanotubes with magnetic material. J. Magn. Magn. Mater. 320(3–4), 312–315 (2008)CrossRef Seifu, D., et al.: Chemical method of filling carbon nanotubes with magnetic material. J. Magn. Magn. Mater. 320(3–4), 312–315 (2008)CrossRef
44.
go back to reference Simon, F., et al.: Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383, 362 (2004)CrossRef Simon, F., et al.: Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383, 362 (2004)CrossRef
45.
go back to reference Singh, C., et al.: Production of aligned carbon nanotubes by the CVD injection method. Physica B Condens. Matter 323(1–4), 339–340 (2002) Singh, C., et al.: Production of aligned carbon nanotubes by the CVD injection method. Physica B Condens. Matter 323(1–4), 339–340 (2002)
46.
go back to reference Smith, B.W., et al.: Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315, 31–36 (1999)CrossRef Smith, B.W., et al.: Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315, 31–36 (1999)CrossRef
47.
go back to reference Takenobu, T., et al.: Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2, 683–688 (2003)CrossRef Takenobu, T., et al.: Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2, 683–688 (2003)CrossRef
48.
go back to reference Tripisciano, C., et al.: Cisplatin functionalized single-walled carbon nanotubes. Physica Status Solidi B 245, 1979–1982 (2008)CrossRef Tripisciano, C., et al.: Cisplatin functionalized single-walled carbon nanotubes. Physica Status Solidi B 245, 1979–1982 (2008)CrossRef
49.
go back to reference Tripisciano, C., et al.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett. 478, 200–205 (2009)CrossRef Tripisciano, C., et al.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett. 478, 200–205 (2009)CrossRef
50.
go back to reference Tsang, S.C., et al.: A simple chemical method of opening and filling carbon nanotubes. Nature 372(6502), 159–162 (1994)CrossRef Tsang, S.C., et al.: A simple chemical method of opening and filling carbon nanotubes. Nature 372(6502), 159–162 (1994)CrossRef
51.
go back to reference Van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)CrossRef Van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)CrossRef
52.
go back to reference Wang, W., et al.: Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor. Carbon 45(5), 1127–1129 (2007)CrossRef Wang, W., et al.: Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor. Carbon 45(5), 1127–1129 (2007)CrossRef
53.
go back to reference Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)CrossRef Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)CrossRef
54.
go back to reference Yanagi, K., et al.: Highly stabilized β-carotene in carbon nanotubes. Adv. Mater. 18, 437–441 (2006)CrossRef Yanagi, K., et al.: Highly stabilized β-carotene in carbon nanotubes. Adv. Mater. 18, 437–441 (2006)CrossRef
Metadata
Title
Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery
Authors
E. Borowiak-Palen
C. Tripisciano
M. Rümmeli
S. Costa
X. Chen
R. J. Kalenczuk
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_4