Skip to main content
Top

2011 | OriginalPaper | Chapter

Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase

Authors : P. Lukanov, C.-M. Tîlmaciu, A. M. Galibert, B. Soula, E. Flahaut

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since their discovery, carbon nanotubes (CNT) have been found to exhibit remarkable structural, mechanical and electronic properties. One such property is the ability to encapsulate foreign materials inside their cylindrical cavity, for application in different fields. The procedures to fill CNT may be classified into two main groups: (a) filling in solution, using the wet chemistry route and (b) filling with a melted phase. In both cases, the filling is induced by the capillary forces. It is also possible to fill CNT in the vapour phase, although there are only few very specific examples available in the literature to date. After filling, oxides and metallic particles can be obtained by a subsequent thermal annealing in the required atmosphere. In the wet chemistry route, the nanotubes are usually treated by an oxidizing agent in order to open their tips. The filling is then performed by placing the opened tubes in a solution of the selected compound (or a precursor). When the compound is dissolved in an oxidizing acid such as nitric acid (HNO3), it is possible to combine opening and filling in a single step. Although this method allows the introduction of heat-sensitive species inside carbon nanotubes, the yield varies strongly with the diameter of the carbon nanotubes and is generally rather low in the case of CNT with a small inner diameter. This filling route mainly leads to isolated nanoparticles or short nanowires. Filling with melted compounds is a solvent-free route. The CNT are directly immersed in the melted material and capillary forces drive the compound into the CNT. Although this route is more restrictive in terms of materials, it allows for the continuous filling of CNT with long nanocrystals (up to a few micrometers), with a higher filling yield in the available CNT (up to ca. 70%). This chapter will describe these two different methods for filling CNT and illustrate them with a few selected examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iijima, S.: Helical microtubules of graphite carbon. Nature 354, 56–58 (1991) Iijima, S.: Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)
2.
go back to reference Smith, B.W., Monthioux, M., Luzzi, D.E.: Encapsulated C60 in carbon nanotubes. Nature 296, 323–325 (1998)CrossRef Smith, B.W., Monthioux, M., Luzzi, D.E.: Encapsulated C60 in carbon nanotubes. Nature 296, 323–325 (1998)CrossRef
3.
go back to reference Wang, Z., Zhao, Z., Qiu, J.: In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source. Carbon 44, 1845–1869 (2006)CrossRef Wang, Z., Zhao, Z., Qiu, J.: In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source. Carbon 44, 1845–1869 (2006)CrossRef
4.
go back to reference Geng, F., Cong, H.: Fe-filled carbon nanotube array with high coercivity. Physica B 382, 300–304 (2006)CrossRef Geng, F., Cong, H.: Fe-filled carbon nanotube array with high coercivity. Physica B 382, 300–304 (2006)CrossRef
5.
go back to reference Costa, S., Borowiak-Palen, E., Bachmatiuk, A., et al.: Filling of CNT for bio-applications. Phys. Status Solidi (B) 244, 4315–4318 (2007)CrossRef Costa, S., Borowiak-Palen, E., Bachmatiuk, A., et al.: Filling of CNT for bio-applications. Phys. Status Solidi (B) 244, 4315–4318 (2007)CrossRef
6.
go back to reference Liu, Z.J., Che, R., Xu, Z., et al.: Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synth. Met. 128, 191–195 (2001)CrossRef Liu, Z.J., Che, R., Xu, Z., et al.: Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synth. Met. 128, 191–195 (2001)CrossRef
7.
go back to reference Schnitzler, M.C., Oliveira, M., Ugarte, D., et al.: One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381, 541–548 (2003)CrossRef Schnitzler, M.C., Oliveira, M., Ugarte, D., et al.: One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381, 541–548 (2003)CrossRef
8.
go back to reference Costa, S., Borowiak-Palen, E., Bachmatiuk, A., et al.: Iron filled carbon nanostructures from different precursors. Energy Convers. Manag. 49, 2483–2486 (2008)CrossRef Costa, S., Borowiak-Palen, E., Bachmatiuk, A., et al.: Iron filled carbon nanostructures from different precursors. Energy Convers. Manag. 49, 2483–2486 (2008)CrossRef
9.
go back to reference Kataura, H., Maniwa, Y., Kodama, T., et al.: High yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121, 1195–1199 (2001)CrossRef Kataura, H., Maniwa, Y., Kodama, T., et al.: High yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121, 1195–1199 (2001)CrossRef
10.
go back to reference Brown, G., Bailey, S.R., Sloan, J.J., et al.: Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Commun. 845–846 (2001) Brown, G., Bailey, S.R., Sloan, J.J., et al.: Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Commun. 845–846 (2001)
11.
go back to reference Pederson, M.R., Broughton, J.Q.: Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689–2692 (1992)CrossRef Pederson, M.R., Broughton, J.Q.: Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689–2692 (1992)CrossRef
12.
go back to reference Ajayan, P.M., Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993)CrossRef Ajayan, P.M., Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993)CrossRef
13.
go back to reference Ebbesen, T.W.: Wetting, filling and decoration of carbon nanotubes. J. Phys. Chem. Solids 57, 951–955 (1996)CrossRef Ebbesen, T.W.: Wetting, filling and decoration of carbon nanotubes. J. Phys. Chem. Solids 57, 951–955 (1996)CrossRef
14.
go back to reference Dujardin, E., Ebbesen, T.W., Krishnan, A., et al.: Wetting of single carbon nanotubes. Adv. Mater. 10, 1472–1475 (1998)CrossRef Dujardin, E., Ebbesen, T.W., Krishnan, A., et al.: Wetting of single carbon nanotubes. Adv. Mater. 10, 1472–1475 (1998)CrossRef
15.
go back to reference Monthioux, M., Flahaut, E., Cleuziou, J.P.: Hybrid carbon nanotubes: strategy, progress and perspectives. J. Mater. Res. 21, 2774–2793 (2006)CrossRef Monthioux, M., Flahaut, E., Cleuziou, J.P.: Hybrid carbon nanotubes: strategy, progress and perspectives. J. Mater. Res. 21, 2774–2793 (2006)CrossRef
16.
go back to reference Ugarte, D., Chatelain, A., Heer, W.A.: Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)CrossRef Ugarte, D., Chatelain, A., Heer, W.A.: Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)CrossRef
17.
go back to reference Dujardin, E., Ebbesen, T.W., Hiura, H., et al.: Capillarity and wetting of carbon nanotubes. Science 265, 1850–1852 (1994)CrossRef Dujardin, E., Ebbesen, T.W., Hiura, H., et al.: Capillarity and wetting of carbon nanotubes. Science 265, 1850–1852 (1994)CrossRef
18.
go back to reference Xu, C., Sloan, J., Brown, G., et al.: 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem. Commun. 2427–2428 (2000) Xu, C., Sloan, J., Brown, G., et al.: 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem. Commun. 2427–2428 (2000)
19.
go back to reference Bishop, C.L., Wilson, M.: The mechanism for filling carbon nanotubes with molten salts: carbon nanotubes as energy landscape filters. J. Phys. Condens. Matter. 21, 1–7 (2009)CrossRef Bishop, C.L., Wilson, M.: The mechanism for filling carbon nanotubes with molten salts: carbon nanotubes as energy landscape filters. J. Phys. Condens. Matter. 21, 1–7 (2009)CrossRef
20.
go back to reference Cook, J., Sloan, J.J., Green, M.L.H.: Opening and filling carbon nanotubes. Fuller. Sci. Technol. 5, 695–704 (1997)CrossRef Cook, J., Sloan, J.J., Green, M.L.H.: Opening and filling carbon nanotubes. Fuller. Sci. Technol. 5, 695–704 (1997)CrossRef
21.
go back to reference Chen, Y.K., Chu, A., Cook, J., et al.: Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 7, 545–549 (1997)CrossRef Chen, Y.K., Chu, A., Cook, J., et al.: Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 7, 545–549 (1997)CrossRef
22.
go back to reference Tsang, S.C., Chen, Y.K., Harris, P.J.F., et al.: A sample chemical method of opening and filling carbon nanotubes. Nature 372, 159–161 (1994)CrossRef Tsang, S.C., Chen, Y.K., Harris, P.J.F., et al.: A sample chemical method of opening and filling carbon nanotubes. Nature 372, 159–161 (1994)CrossRef
23.
go back to reference Zhao, I., Gao, L.: Filling of multi-walled carbon nanotubes with tin (IV) oxide. Carbon 42, 3251–3272 (2004)CrossRef Zhao, I., Gao, L.: Filling of multi-walled carbon nanotubes with tin (IV) oxide. Carbon 42, 3251–3272 (2004)CrossRef
24.
go back to reference Wu, S.W., Guo, J.X., Li, Y.L., et al.: The study of the filling behaviour carbon nanotubes using the radioactive-trace technique. Nanotechnology 14, 1203–1207 (2003)CrossRef Wu, S.W., Guo, J.X., Li, Y.L., et al.: The study of the filling behaviour carbon nanotubes using the radioactive-trace technique. Nanotechnology 14, 1203–1207 (2003)CrossRef
25.
go back to reference Pham-Huu, C., Keller, N., Estournes, C.: Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Commun. 5, 3716–3723 (2003) Pham-Huu, C., Keller, N., Estournes, C.: Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Commun. 5, 3716–3723 (2003)
26.
go back to reference Borowiak-Palen, E., Mendoza, E., Bachmatiuk, A., et al.: Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem. Phys. Lett. 421, 129–133 (2006)CrossRef Borowiak-Palen, E., Mendoza, E., Bachmatiuk, A., et al.: Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem. Phys. Lett. 421, 129–133 (2006)CrossRef
27.
go back to reference Borowiak-Palen, E., Ruemmeli, M.H., Gemming, T., et al.: Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17, 2415–2419 (2006)CrossRef Borowiak-Palen, E., Ruemmeli, M.H., Gemming, T., et al.: Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17, 2415–2419 (2006)CrossRef
28.
go back to reference Jorge, J., Flahaut, E., Gonzalez-Jimenez, F., et al.: Preparation and characterization of a Fe nanowires located inside double wall carbon nanotubes. Chem. Phys. Lett. 457, 347–351 (2008)CrossRef Jorge, J., Flahaut, E., Gonzalez-Jimenez, F., et al.: Preparation and characterization of a Fe nanowires located inside double wall carbon nanotubes. Chem. Phys. Lett. 457, 347–351 (2008)CrossRef
29.
go back to reference Zhao, D.L., Li, X., Shen, Z.M.: Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd. 471, 457–460 (2009)CrossRef Zhao, D.L., Li, X., Shen, Z.M.: Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd. 471, 457–460 (2009)CrossRef
30.
go back to reference Hang, B.T., Hayashi, H., Yoon, S.H.: Fe2O3-filled carbon nanotubes as a negative electrode for a Fe-air battery. J. Power Sour. 178, 393–401 (2008)CrossRef Hang, B.T., Hayashi, H., Yoon, S.H.: Fe2O3-filled carbon nanotubes as a negative electrode for a Fe-air battery. J. Power Sour. 178, 393–401 (2008)CrossRef
31.
go back to reference Seifu, D., Hijji, Y., Hirsch, G.: Chemical method of filling carbon nanotubes with magnetic material. J. Magn. Magn. Mater. 320, 312–315 (2008)CrossRef Seifu, D., Hijji, Y., Hirsch, G.: Chemical method of filling carbon nanotubes with magnetic material. J. Magn. Magn. Mater. 320, 312–315 (2008)CrossRef
32.
go back to reference Jain, D., Wilhelm, R.: An easy way to produce α-iron filled multiwalled carbon nanotubes. Carbon 45, 602–606 (2007)CrossRef Jain, D., Wilhelm, R.: An easy way to produce α-iron filled multiwalled carbon nanotubes. Carbon 45, 602–606 (2007)CrossRef
33.
go back to reference Sloan, J.J., Hammer, J., Sibley, M.Z., et al.: The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 347–348 (1998) Sloan, J.J., Hammer, J., Sibley, M.Z., et al.: The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 347–348 (1998)
34.
go back to reference Gao, H., Kong, Y., Cui, D.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471–473 (2003)CrossRef Gao, H., Kong, Y., Cui, D.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471–473 (2003)CrossRef
35.
go back to reference Chen, G., Qiua, J., Qiu, H.: Filling double-walled carbon nanotubes with AgCl nanowires. Sci. Mater. 58, 457–460 (2008) Chen, G., Qiua, J., Qiu, H.: Filling double-walled carbon nanotubes with AgCl nanowires. Sci. Mater. 58, 457–460 (2008)
36.
go back to reference Lago, R.M., Tsang, S.C., Lu, K.L., et al.: Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. J. Chem. Soc., Chem. Commun. 1355–1356 (1995) Lago, R.M., Tsang, S.C., Lu, K.L., et al.: Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. J. Chem. Soc., Chem. Commun. 1355–1356 (1995)
37.
go back to reference Satishkumar, B.C., Govindaraj, A., Mofokeng, J., et al.: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B 29, 4925–4934 (1996)CrossRef Satishkumar, B.C., Govindaraj, A., Mofokeng, J., et al.: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B 29, 4925–4934 (1996)CrossRef
38.
go back to reference Flahaut, E., Peigney, A., Laurent, C., et al.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. J. Mater. Chem. 10, 249–252 (2000)CrossRef Flahaut, E., Peigney, A., Laurent, C., et al.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. J. Mater. Chem. 10, 249–252 (2000)CrossRef
39.
go back to reference Corio, P., Santos, A.P., Santos, P.S.: Characterisation of single walled carbon nanotubes filled with silver and with chromium compounds. Chem. Phys. Lett. 383, 475–480 (2004)CrossRef Corio, P., Santos, A.P., Santos, P.S.: Characterisation of single walled carbon nanotubes filled with silver and with chromium compounds. Chem. Phys. Lett. 383, 475–480 (2004)CrossRef
40.
go back to reference Chu, A., Cook, J., Heesom, J.R., et al.: Filling of carbon nanotubes with silver, gold, and gold chloride. Chem. Mater. 8, 2751–2754 (1996)CrossRef Chu, A., Cook, J., Heesom, J.R., et al.: Filling of carbon nanotubes with silver, gold, and gold chloride. Chem. Mater. 8, 2751–2754 (1996)CrossRef
41.
go back to reference Sloan, J.J., Cook, J., Heesom, J.R., et al.: The encapsulation and in situ rearrangement of polycrystalline SnO inside carbon nanotubes. J. Cryst. Growth 173, 81–87 (1997)CrossRef Sloan, J.J., Cook, J., Heesom, J.R., et al.: The encapsulation and in situ rearrangement of polycrystalline SnO inside carbon nanotubes. J. Cryst. Growth 173, 81–87 (1997)CrossRef
42.
go back to reference Wu, H.Q., Wei, X.W., Shao, M.W., et al.: Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem. Phys. Lett. 364, 152–156 (2002)CrossRef Wu, H.Q., Wei, X.W., Shao, M.W., et al.: Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem. Phys. Lett. 364, 152–156 (2002)CrossRef
43.
go back to reference Qiang, F., Weinberg, G., Dang-Sheng, S.: Selective filling of carbon nanotubes with metals by selective washing. New Carbon Mater. 23, 17–22 (2008)CrossRef Qiang, F., Weinberg, G., Dang-Sheng, S.: Selective filling of carbon nanotubes with metals by selective washing. New Carbon Mater. 23, 17–22 (2008)CrossRef
44.
go back to reference Tsang, S., Davis, J.J., Green, M.L.H., et al.: Immobilization of small proteins in carbon nanotubes: high-resolution Transmission electron microscopy study and catalytic activity. J. Chem. Soc., Chem. Commun. 17, 1803–1804 (1995)CrossRef Tsang, S., Davis, J.J., Green, M.L.H., et al.: Immobilization of small proteins in carbon nanotubes: high-resolution Transmission electron microscopy study and catalytic activity. J. Chem. Soc., Chem. Commun. 17, 1803–1804 (1995)CrossRef
45.
go back to reference Davis, J.J., Green, M.L.H., Hill, H.A.O., et al.: The immobilization of proteins in carbon nanotubes. Inorg. Chim. Acta 272, 261–266 (1998)CrossRef Davis, J.J., Green, M.L.H., Hill, H.A.O., et al.: The immobilization of proteins in carbon nanotubes. Inorg. Chim. Acta 272, 261–266 (1998)CrossRef
46.
go back to reference Qu, S., Huang, F., Chen, G., et al.: Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme. Electrochem. Commun. 9, 2812–2816 (2007)CrossRef Qu, S., Huang, F., Chen, G., et al.: Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme. Electrochem. Commun. 9, 2812–2816 (2007)CrossRef
47.
go back to reference Borowiak-Palen, E., Bachmatiuk, A., Rümmeli, M.H., et al.: Iron filled single walled carbon nanotubes—synthesis and characteristic properties. Phys. Status Solidi (B) 243, 3277–3280 (2006)CrossRef Borowiak-Palen, E., Bachmatiuk, A., Rümmeli, M.H., et al.: Iron filled single walled carbon nanotubes—synthesis and characteristic properties. Phys. Status Solidi (B) 243, 3277–3280 (2006)CrossRef
48.
go back to reference Shao, L., Tobias, G., Huh, Y., et al.: Reversible filling of single walled carbon nanotubes opened by alkali hydroxides. Carbon 44, 2849–2863 (2006)CrossRef Shao, L., Tobias, G., Huh, Y., et al.: Reversible filling of single walled carbon nanotubes opened by alkali hydroxides. Carbon 44, 2849–2863 (2006)CrossRef
49.
go back to reference Seraphin, S., Zhou, D., Jiao, J., et al.: Yttrium carbide in nanotubes. Nature 362, 503–505 (1993)CrossRef Seraphin, S., Zhou, D., Jiao, J., et al.: Yttrium carbide in nanotubes. Nature 362, 503–505 (1993)CrossRef
50.
go back to reference Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., et al.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522–525 (1993)CrossRef Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., et al.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522–525 (1993)CrossRef
51.
go back to reference Saito, Y., Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134, 154–156 (1993)CrossRef Saito, Y., Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134, 154–156 (1993)CrossRef
52.
go back to reference Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)CrossRef Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)CrossRef
53.
go back to reference Bethune, D.S., Kiang, C.H., De Vries, M.S., et al.: Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef Bethune, D.S., Kiang, C.H., De Vries, M.S., et al.: Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef
54.
go back to reference Sloan, J.J., Kirkland, A.I., Hutchison, J.L., et al.: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 1319–1320 (2002) Sloan, J.J., Kirkland, A.I., Hutchison, J.L., et al.: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 1319–1320 (2002)
55.
go back to reference Sloan, J.J., Kirkland, A.I., Hutchison, J.L., et al.: Aspects of crystal growth within carbon nanotubes. C. R. Phys. 4, 1063–1074 (2003)CrossRef Sloan, J.J., Kirkland, A.I., Hutchison, J.L., et al.: Aspects of crystal growth within carbon nanotubes. C. R. Phys. 4, 1063–1074 (2003)CrossRef
56.
go back to reference Ballesteros, B., Tobias, G., Ward, M.A.H., et al.: Quantitative assessment of the amount of material encapsulated in filled carbon nanotubes. J. Phys. Chem. C 113, 2653–2661 (2009)CrossRef Ballesteros, B., Tobias, G., Ward, M.A.H., et al.: Quantitative assessment of the amount of material encapsulated in filled carbon nanotubes. J. Phys. Chem. C 113, 2653–2661 (2009)CrossRef
57.
go back to reference Kitaura, R., Ogawa, D., Kobayashi, K., et al.: High yield synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Res. 1, 152–156 (2008)CrossRef Kitaura, R., Ogawa, D., Kobayashi, K., et al.: High yield synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Res. 1, 152–156 (2008)CrossRef
58.
go back to reference Chikkannanavar, S.B., Taubert, A., Luzzi, D.E.: Filling single wall carbon nanotubes with metal chloride and metal nanowires and imaging with scanning transmission electron microscopy. Mater. Res. Soc. Symp. Proc. 706, Z6.23.1–Z6.23.9 (2002)CrossRef Chikkannanavar, S.B., Taubert, A., Luzzi, D.E.: Filling single wall carbon nanotubes with metal chloride and metal nanowires and imaging with scanning transmission electron microscopy. Mater. Res. Soc. Symp. Proc. 706, Z6.23.1–Z6.23.9 (2002)CrossRef
59.
go back to reference Tîlmaciu, C.M., Soula, B., Galibert, A.M., et al.: Synthesis of superparamagnetic iron(III) oxide nanowires in double-walled carbon nanotubes. Chem. Commun. (2009). doi:10.1039/b909035e Tîlmaciu, C.M., Soula, B., Galibert, A.M., et al.: Synthesis of superparamagnetic iron(III) oxide nanowires in double-walled carbon nanotubes. Chem. Commun. (2009). doi:10.​1039/​b909035e
60.
go back to reference Hulman, M., Kuzmany, H., Costa, P.M.F.J., et al.: Light-induced instability of PbO-filled single wall carbon nanotubes. Appl. Phys. Lett. 85, 2068–2073 (2004)CrossRef Hulman, M., Kuzmany, H., Costa, P.M.F.J., et al.: Light-induced instability of PbO-filled single wall carbon nanotubes. Appl. Phys. Lett. 85, 2068–2073 (2004)CrossRef
61.
go back to reference Costa, M.F.J., Thamavaranukup, N., Rutherford, T., et al.: Structural and morphological variations of encapsulated metal oxides in single walled carbon nanotubes. Mater. Res. Soc. 901E, 45.1–45.8 (2006) Costa, M.F.J., Thamavaranukup, N., Rutherford, T., et al.: Structural and morphological variations of encapsulated metal oxides in single walled carbon nanotubes. Mater. Res. Soc. 901E, 45.1–45.8 (2006)
62.
go back to reference Flahaut, E., Sloan, J.J., Friedrichs, S., et al.: Crystallization of 2H and 4H PbI2 in carbon nanotubes of varying diameters and morphologies. Chem. Mater. 18(8), 2059–2069 (2006)CrossRef Flahaut, E., Sloan, J.J., Friedrichs, S., et al.: Crystallization of 2H and 4H PbI2 in carbon nanotubes of varying diameters and morphologies. Chem. Mater. 18(8), 2059–2069 (2006)CrossRef
63.
go back to reference Li, X., Yuan, G., Brown, A., et al.: The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon 44, 1699–1705 (2006)CrossRef Li, X., Yuan, G., Brown, A., et al.: The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon 44, 1699–1705 (2006)CrossRef
64.
go back to reference Friedrichs, S., Meyer, R.R., Sloan, J., et al.: Complete characterization of a Sb2O3/(21, −8)SWCNT inclusion composite. Chem. Commun. 929–930 (2001) Friedrichs, S., Meyer, R.R., Sloan, J., et al.: Complete characterization of a Sb2O3/(21, −8)SWCNT inclusion composite. Chem. Commun. 929–930 (2001)
65.
go back to reference Friedrichs, S., Sloan, J.J., Green, M.L.H., et al.: Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite. Phys. Rev. B 64, 045406–045418 (2001)CrossRef Friedrichs, S., Sloan, J.J., Green, M.L.H., et al.: Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite. Phys. Rev. B 64, 045406–045418 (2001)CrossRef
66.
go back to reference Costa, P.M.F.J., Sloan, J., Rutherford, T., et al.: Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 17, 6579–6582 (2005)CrossRef Costa, P.M.F.J., Sloan, J., Rutherford, T., et al.: Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 17, 6579–6582 (2005)CrossRef
67.
go back to reference Govindaraj, A., Satishkumar, B.C., Nath, M., et al.: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202–205 (2000)CrossRef Govindaraj, A., Satishkumar, B.C., Nath, M., et al.: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202–205 (2000)CrossRef
68.
go back to reference Borowiak-Palen, E., Rummeli, M.H., Mendoza, E., et al.: Silver intercalated carbon nanotubes. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Electronic Properties of Novel Nanostructures. American Institute of Physics Proceedings Series, vol. 786, pp. 236–238 Borowiak-Palen, E., Rummeli, M.H., Mendoza, E., et al.: Silver intercalated carbon nanotubes. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Electronic Properties of Novel Nanostructures. American Institute of Physics Proceedings Series, vol. 786, pp. 236–238
69.
go back to reference Kiang, C.H., Choi, J.S., Tran, T.T.: Molecular nanowires of 1 nm diameter from capillary filling of single walled carbon nanotubes. J. Phys. Chem. B 103, 7449–7451 (1999)CrossRef Kiang, C.H., Choi, J.S., Tran, T.T.: Molecular nanowires of 1 nm diameter from capillary filling of single walled carbon nanotubes. J. Phys. Chem. B 103, 7449–7451 (1999)CrossRef
70.
go back to reference Thamavaranukup, N., Höppe, H.A., Ruiz-Gonzalez, L., et al.: Single-walled carbon nanotubes filled with M OH (M = K, Cs) and then washed and refilled with clusters and molecules. Chem. Commun. 1686–1689 (2004) Thamavaranukup, N., Höppe, H.A., Ruiz-Gonzalez, L., et al.: Single-walled carbon nanotubes filled with M OH (M = K, Cs) and then washed and refilled with clusters and molecules. Chem. Commun. 1686–1689 (2004)
71.
go back to reference Lamprecht, C., Danzberger, J., Lukanov, P., et al.: AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 109, 899–907 (2009)CrossRef Lamprecht, C., Danzberger, J., Lukanov, P., et al.: AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 109, 899–907 (2009)CrossRef
72.
go back to reference Heister, E., Neves, V., Tîlmaciu, C., et al.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47, 2152–2161 (2009)CrossRef Heister, E., Neves, V., Tîlmaciu, C., et al.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47, 2152–2161 (2009)CrossRef
73.
go back to reference Klingeler, R., Hampel, S., Büchner, B.: Carbon nanotubes based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperth. 24, 496–508 (2009)CrossRef Klingeler, R., Hampel, S., Büchner, B.: Carbon nanotubes based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperth. 24, 496–508 (2009)CrossRef
74.
go back to reference Loiseau, A., Launois, P., Petit, P.: Understanding carbon nanotubes. In: Béguin, F., et al. (eds.) Surface Properties, Porosity and Electrochemical Applications, pp. 528–529. Springer, Berlin (2006) Loiseau, A., Launois, P., Petit, P.: Understanding carbon nanotubes. In: Béguin, F., et al. (eds.) Surface Properties, Porosity and Electrochemical Applications, pp. 528–529. Springer, Berlin (2006)
75.
go back to reference Sloan, J., Novotny, M.C., Bailey, S.R., et al.: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 329, 61–65 (2000)CrossRef Sloan, J., Novotny, M.C., Bailey, S.R., et al.: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 329, 61–65 (2000)CrossRef
76.
go back to reference Flahaut, E., Sloan, J., Coleman, K.S.: 1D p-block halide crystals confined into single walled carbon nanotubes. Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001) Flahaut, E., Sloan, J., Coleman, K.S.: 1D p-block halide crystals confined into single walled carbon nanotubes. Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001)
Metadata
Title
Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase
Authors
P. Lukanov
C.-M. Tîlmaciu
A. M. Galibert
B. Soula
E. Flahaut
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_3