Skip to main content
Top
Published in:

2021 | OriginalPaper | Chapter

Financial Portfolio Construction for Quantitative Trading Using Deep Learning Technique

Authors : Rasha Abdel Kawy, Walid M. Abdelmoez, Amin Shoukry

Published in: Artificial Intelligence and Soft Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stock portfolio construction is a difficult task which involves the simultaneous consideration of dynamic financial data as well as investment criteria (e.g.: investors required return, risk tolerance, goals, and time frame). The objective of this research is to present a two phase deep learning module to csonstruct a financial stocks portfolio that can be used repeatedly to select the most promising stocks and adjust stocks allocations (namely quantitative trading system). A deep belief network is used to discover the complex regularities among the stocks while a long short-term memory network is used for time series financial data prediction. The proposed deep learning architecture has been tested on the american stock market and has outperformed other known machine learning techniques (support vector machine and random forests) in several prediction accuracy metrices. Furthermore, the results showed that our architecture as a portfolio construction model outperforms three benchmark models with several financial profitability and risk-adjusted metrics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Comput. Oper. Rese. 32(10), 2513–2522 (2005) Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Comput. Oper. Rese. 32(10), 2513–2522 (2005)
2.
go back to reference Kazem, A., Sharifi, E., Hussian, F.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947–958 (2013)CrossRef Kazem, A., Sharifi, E., Hussian, F.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947–958 (2013)CrossRef
3.
go back to reference Cervelló-Royo, R., Guijarro, F., Michniuk, K.: Stock market trading rule based on pattern recognition and technical analysis: forecasting the DJIA index with intraday data. Expert Syst. Appl. 42(14), 5963–5975 (2015)CrossRef Cervelló-Royo, R., Guijarro, F., Michniuk, K.: Stock market trading rule based on pattern recognition and technical analysis: forecasting the DJIA index with intraday data. Expert Syst. Appl. 42(14), 5963–5975 (2015)CrossRef
4.
go back to reference Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E.W.T., Liu, M.: Application of evolutionary computation for rule discovery in stock algorithmic trading: a literature review. Appl. Soft Comput. 36, 534–551 (2015)CrossRef Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E.W.T., Liu, M.: Application of evolutionary computation for rule discovery in stock algorithmic trading: a literature review. Appl. Soft Comput. 36, 534–551 (2015)CrossRef
5.
go back to reference Aguilar-Rivera, R., Valenzuela-Rend-on, M., Rodr-guez-Ortiz, J.: Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst. Appl. 42, 7684–7697 (2015)CrossRef Aguilar-Rivera, R., Valenzuela-Rend-on, M., Rodr-guez-Ortiz, J.: Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst. Appl. 42, 7684–7697 (2015)CrossRef
6.
go back to reference Raffinot, T.: Hierarchical clustering-based asset allocation. J. Portfolio Manage. Multi-Asset Special Issue 44(2), 89–99 (2018)MathSciNetCrossRef Raffinot, T.: Hierarchical clustering-based asset allocation. J. Portfolio Manage. Multi-Asset Special Issue 44(2), 89–99 (2018)MathSciNetCrossRef
7.
go back to reference Gonzalvez, J., Lezmi E., Roncalli, T., Xu J.: Financial Applications of Gaussian Processes and Bayesian Optimization. arXiv:1903.04841 (2019) Gonzalvez, J., Lezmi E., Roncalli, T., Xu J.: Financial Applications of Gaussian Processes and Bayesian Optimization. arXiv:​1903.​04841 (2019)
9.
go back to reference Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 527–554 (2006) Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 527–554 (2006)
11.
go back to reference Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12, e0180944 (2017) Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12, e0180944 (2017)
12.
go back to reference Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Euro. J. Oper. Res. 270, 654–669 (2018) Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Euro. J. Oper. Res. 270, 654–669 (2018)
13.
go back to reference Ta, V.-D., Liu, C.-M., Tadesse, D.A.: Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Appl. Sci. 10(2), 437 (2020) Ta, V.-D., Liu, C.-M., Tadesse, D.A.: Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Appl. Sci. 10(2), 437 (2020)
15.
go back to reference Shen, F., Chao, J., Zhao, J.: Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167, 243–253 (2015) Shen, F., Chao, J., Zhao, J.: Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167, 243–253 (2015)
16.
go back to reference Assis, C.A.S., Pereira, A.C.M., Carrano, E.G., Ramos, R., Dias, W.: Restricted boltzmann machines for the prediction of trends in financial time series. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–18. Rio de Janeiro (2018) Assis, C.A.S., Pereira, A.C.M., Carrano, E.G., Ramos, R., Dias, W.: Restricted boltzmann machines for the prediction of trends in financial time series. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–18. Rio de Janeiro (2018)
18.
go back to reference Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, pp. 278–282. IEEE (1995) Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, pp. 278–282. IEEE (1995)
19.
go back to reference Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001) Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
20.
go back to reference Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(1), 199–222 (2004) Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(1), 199–222 (2004)
21.
go back to reference Lu, C.J., Lee, T.S., Chiu, C.C.: Financial time series forecasting using independent component analysis and support vector regression. Decis. Support Syst. 47(2), 115–125 (2009)CrossRef Lu, C.J., Lee, T.S., Chiu, C.C.: Financial time series forecasting using independent component analysis and support vector regression. Decis. Support Syst. 47(2), 115–125 (2009)CrossRef
Metadata
Title
Financial Portfolio Construction for Quantitative Trading Using Deep Learning Technique
Authors
Rasha Abdel Kawy
Walid M. Abdelmoez
Amin Shoukry
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87986-0_1

Premium Partner