Skip to main content
Top

2024 | OriginalPaper | Chapter

Finger Movement Classification from EMG Signals Using Gaussian Mixture Model

Authors : Mehmet Emin Aktan, Merve Aktan Süzgün, Erhan Akdoğan, Tuğçe Özekli Mısırlıoğlu

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical role of EMG signals in evaluating muscle activity for hand rehabilitation and prosthesis applications. It introduces the use of the Gaussian Mixture Model for classifying finger movements, with a focus on the pre-processing steps and the Log-Linearized Gaussian Mixture Network (LLGMN) model. The study involves real-time data collection from three subjects, highlighting the challenges and potential improvements in movement classification, particularly for the index finger. The results demonstrate the feasibility of using EMG signals for precise movement detection, with implications for enhancing the effectiveness of therapeutic and prosthetic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Bhattachargee, C.K., Sikder, N., Hasan, M.T, Nahid, A.A.: Finger movement classification based on statistical and frequency features extracted from surface EMG signals. In: International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, pp. 1–4 (2019). https://doi.org/10.1109/IC4ME247184.2019.9036671 Bhattachargee, C.K., Sikder, N., Hasan, M.T, Nahid, A.A.: Finger movement classification based on statistical and frequency features extracted from surface EMG signals. In: International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, pp. 1–4 (2019). https://​doi.​org/​10.​1109/​IC4ME247184.​2019.​9036671
Metadata
Title
Finger Movement Classification from EMG Signals Using Gaussian Mixture Model
Authors
Mehmet Emin Aktan
Merve Aktan Süzgün
Erhan Akdoğan
Tuğçe Özekli Mısırlıoğlu
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_22

Premium Partners