Skip to main content
Top

2018 | OriginalPaper | Chapter

Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers

Authors : P. Wriggers, B. Hudobivnik, J. Schröder

Published in: Multiscale Modeling of Heterogeneous Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anisotropic material with inextensive or nearly inextensible fibers introduce constraints in the mathematical formulations of the underlying differential equations from mechanics. This is always the case when fibers with high stiffness in a certain direction are present and a relatively weak matrix material is supporting these fibers. In numerical solution schemes like the finite element method or the virtual element method the presence of constraints—in this case associated to a possible fiber inextensibility compared to a matrix—lead to so called locking-phenomena. This can be overcome by special interpolation schemes as has been discussed extensively for volume constraints like incompressibility as well as contact constraints. For anisotropic material behaviour the most severe case is related to inextensible fibers. In this paper a mixed method is developed for finite elements and virtual elements that can handle anisotropic materials with inextensive and nearly inextensive fibers. For this purpose a classical ansatz, known from the modeling of volume constraint is adopted leading stable elements that can be used in the finite strain regime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
It is well known that ill-conditioning can occur when a large penalty parameter \(C_c\) is selected. Thus in reality the penalty formulation is only able to approximately enforce the constraint condition (8).
 
2
In the linear case both conditions, while being different, yield a linear dependence on the components of the displacement gradient. Thus there the choice of using the same ansatz function for the pressure (incompressibility) and the fiber stress (anisotropy) is justified.
 
Literature
1.
go back to reference Auricchio, F., de Veiga, L.B., Lovadina, C., Reali, A.: A stability study of some mixed finite elements for large deformation elasticity problems. Comput. Methods Appl. Mech. Eng. 194, 1075–1092 (2005)MathSciNetCrossRefMATH Auricchio, F., de Veiga, L.B., Lovadina, C., Reali, A.: A stability study of some mixed finite elements for large deformation elasticity problems. Comput. Methods Appl. Mech. Eng. 194, 1075–1092 (2005)MathSciNetCrossRefMATH
2.
go back to reference Auricchio, F., da Velga, L.B., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)MathSciNetCrossRefMATH Auricchio, F., da Velga, L.B., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)MathSciNetCrossRefMATH
4.
go back to reference Babuska, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62(1), 439–463 (1992)MathSciNetCrossRefMATH Babuska, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62(1), 439–463 (1992)MathSciNetCrossRefMATH
5.
go back to reference Bathe, K.J.: Finite Element Procedures. Prentice Hall (2006) Bathe, K.J.: Finite Element Procedures. Prentice Hall (2006)
6.
go back to reference Beirão Da Veiga, L., Brezzi, F., Marini, L.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013) Beirão Da Veiga, L., Brezzi, F., Marini, L.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)
7.
go back to reference Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015) Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)
8.
go back to reference Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput. Methods Appl. Mech. Eng. 88(3), 311–340 (1991)MathSciNetCrossRefMATH Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput. Methods Appl. Mech. Eng. 88(3), 311–340 (1991)MathSciNetCrossRefMATH
9.
go back to reference Belytschko, T., Ong, J.S.J., Liu, W.K., Kennedy, J.M.: Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Mech. Eng. 43, 251–276 (1984)CrossRefMATH Belytschko, T., Ong, J.S.J., Liu, W.K., Kennedy, J.M.: Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Mech. Eng. 43, 251–276 (1984)CrossRefMATH
10.
go back to reference Boerner, E., Loehnert, S., Wriggers, P.: A new finite element based on the theory of a cosserat point—extension to initially distorted elements for 2D plane strain. Int. J. Numer. Methods Eng. 71, 454–472 (2007)MathSciNetCrossRefMATH Boerner, E., Loehnert, S., Wriggers, P.: A new finite element based on the theory of a cosserat point—extension to initially distorted elements for 2D plane strain. Int. J. Numer. Methods Eng. 71, 454–472 (2007)MathSciNetCrossRefMATH
11.
go back to reference Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue francaise d’automatique, informatique, recherche operationnelle. Anal. Numer. 8(2), 129–151 (1974) Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue francaise d’automatique, informatique, recherche operationnelle. Anal. Numer. 8(2), 129–151 (1974)
12.
15.
go back to reference Flanagan, D., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int. J. Num. Methods Eng. 17, 679–706 (1981)CrossRefMATH Flanagan, D., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int. J. Num. Methods Eng. 17, 679–706 (1981)CrossRefMATH
16.
go back to reference Hamila, N., Boisse, P.: Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos. Part A, 109–117 (2013) Hamila, N., Boisse, P.: Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos. Part A, 109–117 (2013)
17.
go back to reference Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47(16), 2056–2061 (2010)CrossRefMATH Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47(16), 2056–2061 (2010)CrossRefMATH
18.
go back to reference Holzapfel, G., Gasser, T., Ogden, R.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 61(1–3), 1–48 (2000)MathSciNetMATH Holzapfel, G., Gasser, T., Ogden, R.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 61(1–3), 1–48 (2000)MathSciNetMATH
19.
go back to reference Hughes, T.R.J.: The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey (1987)MATH Hughes, T.R.J.: The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey (1987)MATH
20.
go back to reference Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187, 231–248 (1997)CrossRefMATH Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187, 231–248 (1997)CrossRefMATH
23.
go back to reference Korelc, J., Solinc, U., Wriggers, P.: An improved EAS brick element for finite deformation. Comput. Mech. 46, 641–659 (2010)CrossRefMATH Korelc, J., Solinc, U., Wriggers, P.: An improved EAS brick element for finite deformation. Comput. Mech. 46, 641–659 (2010)CrossRefMATH
24.
25.
go back to reference Krysl, P.: Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int. J. Num. Methods Eng. 103, 650–670 (2015)MathSciNetCrossRefMATH Krysl, P.: Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int. J. Num. Methods Eng. 103, 650–670 (2015)MathSciNetCrossRefMATH
26.
go back to reference Krysl, P.: Mean-strain eight-node hexahedron with stabilization by energy sampling. Int. J. Numer. Methods Eng. 103, 437–449 (2015)MathSciNetCrossRefMATH Krysl, P.: Mean-strain eight-node hexahedron with stabilization by energy sampling. Int. J. Numer. Methods Eng. 103, 437–449 (2015)MathSciNetCrossRefMATH
27.
go back to reference Krysl, P.: Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem. Anal. Des. 108, 41–53 (2016)MathSciNetCrossRef Krysl, P.: Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem. Anal. Des. 108, 41–53 (2016)MathSciNetCrossRef
28.
go back to reference Loehnert, S., Boerner, E., Rubin, M., Wriggers, P.: Response of a nonlinear elastic general cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput. Mech. 36, 255–265 (2005)CrossRefMATH Loehnert, S., Boerner, E., Rubin, M., Wriggers, P.: Response of a nonlinear elastic general cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput. Mech. 36, 255–265 (2005)CrossRefMATH
29.
go back to reference Mueller-Hoeppe, D.S., Loehnert, S., Wriggers, P.: A finite deformation brick element with inhomogeneous mode enhancement. Int. J. Numer. Methods Eng. 78, 1164–1187 (2009)MathSciNetCrossRefMATH Mueller-Hoeppe, D.S., Loehnert, S., Wriggers, P.: A finite deformation brick element with inhomogeneous mode enhancement. Int. J. Numer. Methods Eng. 78, 1164–1187 (2009)MathSciNetCrossRefMATH
30.
go back to reference Nadler, B., Rubin, M.: A new 3-D finite element for nonlinear elasticity using the theory of a cosserat point. Int. J. Solids Struct. 40, 4585–4614 (2003)CrossRefMATH Nadler, B., Rubin, M.: A new 3-D finite element for nonlinear elasticity using the theory of a cosserat point. Int. J. Solids Struct. 40, 4585–4614 (2003)CrossRefMATH
31.
go back to reference Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Methods Eng. 57, 1095–1127 (2003)CrossRefMATH Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Methods Eng. 57, 1095–1127 (2003)CrossRefMATH
32.
go back to reference Reese, S., Kuessner, M., Reddy, B.D.: A new stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng. 44, 1617–1652 (1999)CrossRef Reese, S., Kuessner, M., Reddy, B.D.: A new stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng. 44, 1617–1652 (1999)CrossRef
33.
go back to reference Reese, S., Wriggers, P.: A new stabilization concept for finite elements in large deformation problems. Int. J. Numer. Methods Eng. 48, 79–110 (2000)CrossRefMATH Reese, S., Wriggers, P.: A new stabilization concept for finite elements in large deformation problems. Int. J. Numer. Methods Eng. 48, 79–110 (2000)CrossRefMATH
34.
go back to reference Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A/Solids 27(1), 28–39 (2008)MathSciNetCrossRefMATH Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A/Solids 27(1), 28–39 (2008)MathSciNetCrossRefMATH
35.
go back to reference Schröder, J.: Anisotropic polyconvex energies. In: Schröder, J. (ed.) Polyconvex Analysis, vol. 62, pp. 1–53. CISM, Springer, Wien (2009) Schröder, J.: Anisotropic polyconvex energies. In: Schröder, J. (ed.) Polyconvex Analysis, vol. 62, pp. 1–53. CISM, Springer, Wien (2009)
36.
go back to reference Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003)MathSciNetCrossRefMATH Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003)MathSciNetCrossRefMATH
37.
go back to reference Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element simplified kinematics for anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)MathSciNetCrossRef Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element simplified kinematics for anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)MathSciNetCrossRef
38.
go back to reference Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33, 1413–1449 (1992)CrossRefMATH Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33, 1413–1449 (1992)CrossRefMATH
39.
go back to reference Simo, J.C., Armero, F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 110, 359–386 (1993)CrossRefMATH Simo, J.C., Armero, F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 110, 359–386 (1993)CrossRefMATH
40.
go back to reference Simo, J.C., Rifai, M.S.: A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)MathSciNetCrossRefMATH Simo, J.C., Rifai, M.S.: A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)MathSciNetCrossRefMATH
41.
go back to reference Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)MathSciNetCrossRefMATH Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)MathSciNetCrossRefMATH
42.
go back to reference ten Thjie, R.H.W., Akkerman, R.: Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Compos. Part A, 1167–1176 (2008) ten Thjie, R.H.W., Akkerman, R.: Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Compos. Part A, 1167–1176 (2008)
43.
go back to reference Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1), 107–128 (1996)CrossRefMATH Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1), 107–128 (1996)CrossRefMATH
44.
go back to reference Wriggers, P.: Nonlinear Finite Elements. Springer, Berlin (2008)MATH Wriggers, P.: Nonlinear Finite Elements. Springer, Berlin (2008)MATH
46.
47.
go back to reference Wriggers, P., Schröder, J., Auricchio, F.: Finite element formulations for large strain anisotropic materials. Int. J. Adv. Model. Simul. Eng. Sci. 3(25), 1–18 (2016) Wriggers, P., Schröder, J., Auricchio, F.: Finite element formulations for large strain anisotropic materials. Int. J. Adv. Model. Simul. Eng. Sci. 3(25), 1–18 (2016)
48.
go back to reference Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 281, 220–249 (2014)MathSciNetCrossRef Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 281, 220–249 (2014)MathSciNetCrossRef
49.
go back to reference Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2, 5th edn. Butterworth-Heinemann, Oxford, UK (2000) Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2, 5th edn. Butterworth-Heinemann, Oxford, UK (2000)
50.
go back to reference Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290 (1971)CrossRefMATH Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290 (1971)CrossRefMATH
Metadata
Title
Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers
Authors
P. Wriggers
B. Hudobivnik
J. Schröder
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65463-8_11

Premium Partners