Skip to main content
Top
Published in:

18-04-2024

Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability

Authors: Mahdi Saedshoar Heris, Mohammad Javidi

Published in: The Journal of Supercomputing | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of \(\textrm{O}({h^2} + {k^2} +{\kappa ^2} + {\sigma ^2} + {\rho ^2})\), where h, k and \(\kappa\) are space step for x, y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Proceedings of the Second Conference on Scientific Computing in Chemical Engineering, Springer, Heidelberg, pp 217–224 Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Proceedings of the Second Conference on Scientific Computing in Chemical Engineering, Springer, Heidelberg, pp 217–224
2.
go back to reference Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst SigProcess 5(2):81–88 Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst SigProcess 5(2):81–88
3.
go back to reference Glockle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68(1):46–53 Glockle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68(1):46–53
4.
go back to reference Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore
5.
go back to reference Anastassiou GA (2011) Advances on fractional inequalities. Springer Science & Business Media, Berlin Anastassiou GA (2011) Advances on fractional inequalities. Springer Science & Business Media, Berlin
6.
go back to reference Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2010) Fractional calculus: models and numerical methods. World Scientific, Singapore Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2010) Fractional calculus: models and numerical methods. World Scientific, Singapore
7.
go back to reference Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin
8.
go back to reference Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam
9.
go back to reference Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York
10.
go back to reference Podlubny I (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198 of, Mathematics in Science and Engineering Podlubny I (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198 of, Mathematics in Science and Engineering
11.
go back to reference Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3(3):565–580MathSciNet Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3(3):565–580MathSciNet
12.
go back to reference Garrappa R (2015) Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math Comput Simul 110:96–112MathSciNet Garrappa R (2015) Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math Comput Simul 110:96–112MathSciNet
13.
14.
go back to reference Morgado ML, Ford NJ, Lima P (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168MathSciNet Morgado ML, Ford NJ, Lima P (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168MathSciNet
15.
go back to reference Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNet Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNet
16.
go back to reference Wolkenfelt PHM (1979) Linear multistep methods and the construction of quadrature formulae for volterra integral and integro-differential equations. Technical report NW 76/79. Mathematisch Centrum, Amsterdam, Netherlands Wolkenfelt PHM (1979) Linear multistep methods and the construction of quadrature formulae for volterra integral and integro-differential equations. Technical report NW 76/79. Mathematisch Centrum, Amsterdam, Netherlands
17.
go back to reference Garrappa R, Moret I, Popolizio M (2015) Solving the time-fractional schrodinger equation by krylov projection methods. J Comput Phys 293:115–134MathSciNet Garrappa R, Moret I, Popolizio M (2015) Solving the time-fractional schrodinger equation by krylov projection methods. J Comput Phys 293:115–134MathSciNet
18.
go back to reference Edwards JT, Ford NJ, Simpson AC (2002) The numerical solution of linear multi-term fractional differential equations: systems of equations. J Appl Anal Comput 148(2):401–418MathSciNet Edwards JT, Ford NJ, Simpson AC (2002) The numerical solution of linear multi-term fractional differential equations: systems of equations. J Appl Anal Comput 148(2):401–418MathSciNet
19.
go back to reference Asl MS, Javidi M (2017) An improved pc scheme for nonlinear fractional differential equations: error and stability analysis. J Appl Anal Comput 324:101–117MathSciNet Asl MS, Javidi M (2017) An improved pc scheme for nonlinear fractional differential equations: error and stability analysis. J Appl Anal Comput 324:101–117MathSciNet
20.
go back to reference Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton-zooplankton system. J Appl Anal Comput 339:193–207MathSciNet Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton-zooplankton system. J Appl Anal Comput 339:193–207MathSciNet
21.
go back to reference Asl MS, Javidi M, Ahmad B (2019) New predictor-corrector approach for nonlinear fractional differential equations: error analysis and stability. J Appl Anal Comput 9(4):1527–1557MathSciNet Asl MS, Javidi M, Ahmad B (2019) New predictor-corrector approach for nonlinear fractional differential equations: error analysis and stability. J Appl Anal Comput 9(4):1527–1557MathSciNet
22.
go back to reference Wang Z, Huang X, Shi G (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comp Math Appl 62(3):1531–1539MathSciNet Wang Z, Huang X, Shi G (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comp Math Appl 62(3):1531–1539MathSciNet
23.
go back to reference Sachin B (2012) Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process 6:513–519 Sachin B (2012) Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process 6:513–519
24.
go back to reference Sachin B, Daftardar-Gejji V, Baleanu D, Magin R (2011) Fractional Bloch equation with delay. Comput Math Appl 61(5):1355–1365MathSciNet Sachin B, Daftardar-Gejji V, Baleanu D, Magin R (2011) Fractional Bloch equation with delay. Comput Math Appl 61(5):1355–1365MathSciNet
25.
go back to reference Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Numer Simul 14(5):2310–2318MathSciNet Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Numer Simul 14(5):2310–2318MathSciNet
26.
go back to reference Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNet Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNet
27.
go back to reference Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediter J Math 14(3):134MathSciNet Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediter J Math 14(3):134MathSciNet
28.
go back to reference Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNet Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNet
29.
go back to reference Cermak J, Hornıcek J, Kisela T (2016) Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simul 31(1):108–123MathSciNet Cermak J, Hornıcek J, Kisela T (2016) Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simul 31(1):108–123MathSciNet
30.
go back to reference Lazarevic MP, Spasic AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math Comp Modell 49(3):475–481MathSciNet Lazarevic MP, Spasic AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math Comp Modell 49(3):475–481MathSciNet
31.
go back to reference Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part i. Int J Appl Math 2(7):865–882MathSciNet Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part i. Int J Appl Math 2(7):865–882MathSciNet
32.
go back to reference Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part ii. Int J Appl Math 2(8):965–988MathSciNet Bagley R, Torvik P (2000) On the existence of the order domain and the solution of distributed order equations-part ii. Int J Appl Math 2(8):965–988MathSciNet
33.
go back to reference Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calculus Appl Anal 4(4):421–442MathSciNet Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calculus Appl Anal 4(4):421–442MathSciNet
34.
go back to reference Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46(2):223–234 Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46(2):223–234
35.
go back to reference Sokolov I, Chechkin A, Klafter J Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146 Sokolov I, Chechkin A, Klafter J Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146
36.
go back to reference Umarov S, Gorenflo R (2005) Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations: part one. J Anal Appl 245(3):449–466 Umarov S, Gorenflo R (2005) Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations: part one. J Anal Appl 245(3):449–466
37.
go back to reference Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J Math Anal Appl 379(1):216–228MathSciNet Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J Math Anal Appl 379(1):216–228MathSciNet
38.
go back to reference Gorenflo R, Luchko Y, Stojanovic M (2013) Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract Calculus Appl Anal 16(2):297–316MathSciNet Gorenflo R, Luchko Y, Stojanovic M (2013) Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract Calculus Appl Anal 16(2):297–316MathSciNet
39.
go back to reference Zhao J, Zhang Y, Xu Y (2020) Implicit runge-kutta and spectral galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comput Appl Math 39(2):1–27MathSciNet Zhao J, Zhang Y, Xu Y (2020) Implicit runge-kutta and spectral galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comput Appl Math 39(2):1–27MathSciNet
40.
go back to reference Zaky MA, Machado JT (2020) Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl 79(2):476–488MathSciNet Zaky MA, Machado JT (2020) Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl 79(2):476–488MathSciNet
41.
go back to reference Zhang Y, Cao J, Bu W, Xiao A (2020) A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction diffusion equation. Int J Model Simul Sci Comput 11(02):2050016 Zhang Y, Cao J, Bu W, Xiao A (2020) A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction diffusion equation. Int J Model Simul Sci Comput 11(02):2050016
42.
go back to reference Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional cable equation in two dimensions. Comp Math Appl 80(5):923–939MathSciNet Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional cable equation in two dimensions. Comp Math Appl 80(5):923–939MathSciNet
43.
go back to reference Li J, Yang Y, Jiang Y, Feng L, Guo B (2021) High-order numerical method for solving a space distributed-order time-fractional diffusion equation. Acta Math Sci 41(3):801–826MathSciNet Li J, Yang Y, Jiang Y, Feng L, Guo B (2021) High-order numerical method for solving a space distributed-order time-fractional diffusion equation. Acta Math Sci 41(3):801–826MathSciNet
44.
go back to reference Yang S, Liu F, Feng L, Turner I (2021) A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients. J Comput Appl Math 388:113337MathSciNet Yang S, Liu F, Feng L, Turner I (2021) A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients. J Comput Appl Math 388:113337MathSciNet
45.
go back to reference Javidi M, Heris MS MS, Ahmad B (2019) A predictor-corrector scheme for solving nonlinear fractional differential equations with uniform and nonuniform meshes. Int J Model Simul Sci Comput 10(5):1950033 Javidi M, Heris MS MS, Ahmad B (2019) A predictor-corrector scheme for solving nonlinear fractional differential equations with uniform and nonuniform meshes. Int J Model Simul Sci Comput 10(5):1950033
46.
go back to reference Heris MS, Javidi M, Ahmad B (2019) Analytical and numerical solutions of Riesz space fractional advection-dispersion equations with delay. Comp Model Eng Sci 121(1):249–272 Heris MS, Javidi M, Ahmad B (2019) Analytical and numerical solutions of Riesz space fractional advection-dispersion equations with delay. Comp Model Eng Sci 121(1):249–272
47.
go back to reference Heris MS, Javidi M (2019) A predictor-corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J Supercomput 75(12):8168–8206 Heris MS, Javidi M (2019) A predictor-corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J Supercomput 75(12):8168–8206
48.
go back to reference Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. SeMA J 76:533–551MathSciNet Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. SeMA J 76:533–551MathSciNet
49.
go back to reference Lateef Saeed I, Javidi M, Heris MS (2024) Numerical methods for solving a Riesz space partial fractional differential equation: applied to fractional kinetic equations. Int J Appl Comput Math 10(1):1MathSciNet Lateef Saeed I, Javidi M, Heris MS (2024) Numerical methods for solving a Riesz space partial fractional differential equation: applied to fractional kinetic equations. Int J Appl Comput Math 10(1):1MathSciNet
50.
go back to reference Zhang H, Jia J, Jiang X (2020) An optimal error estimate for the twodimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions. Comp Math Appl 79(10):2819–2831 Zhang H, Jia J, Jiang X (2020) An optimal error estimate for the twodimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions. Comp Math Appl 79(10):2819–2831
51.
go back to reference Hao Z, Zhang Z (2020) Optimal regularity and error estimates of a spectral galerkin method for fractional advection-diffusion-reaction equations. SIAM J Numer Anal 58(1):211–233MathSciNet Hao Z, Zhang Z (2020) Optimal regularity and error estimates of a spectral galerkin method for fractional advection-diffusion-reaction equations. SIAM J Numer Anal 58(1):211–233MathSciNet
52.
go back to reference Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A crank-nicolson adigalerkin-legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comp Math Appl 76(10):2460–2476 Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A crank-nicolson adigalerkin-legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comp Math Appl 76(10):2460–2476
53.
go back to reference Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146 Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics, arXiv preprint cond-mat/0401146
54.
go back to reference Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comp Math Appl 74(4):772–783MathSciNet Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comp Math Appl 74(4):772–783MathSciNet
55.
go back to reference Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Modell 34(1):200–218MathSciNet Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Modell 34(1):200–218MathSciNet
56.
go back to reference Yousuf M, Furati KM, Khaliq AQM (2020) High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput Math Appl 80(1):204–226MathSciNet Yousuf M, Furati KM, Khaliq AQM (2020) High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput Math Appl 80(1):204–226MathSciNet
57.
go back to reference Zhang L, Zhang Q, Sun HW (2023) Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation. Comput Math Appl 150:211–228MathSciNet Zhang L, Zhang Q, Sun HW (2023) Preconditioned fourth-order exponential integrator for two-dimensional nonlinear fractional Ginzburg-Landau equation. Comput Math Appl 150:211–228MathSciNet
58.
go back to reference Zhang Q, Hesthaven JS, Sun Z, Ren Y (2021) Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv Comput Math 47:1–33MathSciNet Zhang Q, Hesthaven JS, Sun Z, Ren Y (2021) Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv Comput Math 47:1–33MathSciNet
59.
go back to reference Zhang M, Zhang GF (2021) Fast iterative solvers for the two-dimensional spatial fractional Ginzburg-Landau equations. Appl Math Let 121:107350MathSciNet Zhang M, Zhang GF (2021) Fast iterative solvers for the two-dimensional spatial fractional Ginzburg-Landau equations. Appl Math Let 121:107350MathSciNet
60.
go back to reference Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNet Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77MathSciNet
61.
go back to reference Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727MathSciNet Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727MathSciNet
62.
go back to reference Thomas JW (2013) Numerical partial differential equations: finite difference methods, vol 22. Springer Science & Business Media, Berlin Thomas JW (2013) Numerical partial differential equations: finite difference methods, vol 22. Springer Science & Business Media, Berlin
63.
go back to reference Varga RS (2010) Gersgorin and his circles, vol 36. Springer Science & Business Media, Berlin Varga RS (2010) Gersgorin and his circles, vol 36. Springer Science & Business Media, Berlin
Metadata
Title
Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability
Authors
Mahdi Saedshoar Heris
Mohammad Javidi
Publication date
18-04-2024
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 12/2024
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06112-x

Premium Partner