Skip to main content
Top

2018 | OriginalPaper | Chapter

Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain Electromagnetics: A Review

Authors : Theodoros T. Zygiridis, Nikolaos V. Kantartzis

Published in: Applications of Nonlinear Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonlinearities are likely to emerge in a wide range of electromagnetic (EM) problems, commonly described by Maxwell’s equations, which can be encountered in several real-world applications, in areas such as optical communications, etc. The necessity for efficiently analyzing this type of problems has led to the development of suitable computational approaches, among which schemes based on the finite-difference time-domain (FDTD) method play a prominent role. Unlike other numerical methods that perform reliably only if specific approximations are valid (e.g. wave propagation along a dominant direction), FDTD-based techniques can be applied in more generalized frameworks, and are capable of computing credible outcomes without requiring very complex algorithmic implementations. In the present chapter, we report various key contributions presented over the years regarding the nonlinear FDTD analysis of EM problems, as the original algorithm is suitable for linear cases only, and describe their basic formulation, features, and range of applicability. In essence, this work aspires to provide an updated look on existing finite-difference models for nonlinear problems, and offer to those not familiar with the subject a solid starting point for studying the corresponding electromagnetic phenomena.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the simple—quite common—case of linear materials, it is P = 𝜖 0 χ (1) E.
 
2
The convention \(f\left ( {i\varDelta x,j\varDelta y,k\varDelta z,n\varDelta t} \right ) = \left . f \right |{ }_{i,j,k}^n\) is used in this work.
 
3
Second-harmonic generation is a phenomenon, according to which a wave within a nonlinear medium can produce another wave with twice the frequency of the former.
 
Literature
1.
go back to reference K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966) K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)
2.
go back to reference A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005) A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005)
3.
go back to reference J.-F. Lee, R. Lee, A. Cangellaris, Time-domain finite-element methods. IEEE Trans. Antennas Propag. 45(3), 430–442 (1997)MathSciNetCrossRef J.-F. Lee, R. Lee, A. Cangellaris, Time-domain finite-element methods. IEEE Trans. Antennas Propag. 45(3), 430–442 (1997)MathSciNetCrossRef
4.
go back to reference J. Chen, Q.H. Liu, Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: a review. Proc. IEEE 101(2), 242–254 (2013)CrossRef J. Chen, Q.H. Liu, Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: a review. Proc. IEEE 101(2), 242–254 (2013)CrossRef
5.
go back to reference S.M. Rao, D.R. Wilton, Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 39(1), 56–61 (1991)CrossRef S.M. Rao, D.R. Wilton, Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 39(1), 56–61 (1991)CrossRef
6.
go back to reference N.V. Kantartzis, T.D. Tsiboukis, Higher Order FDTD Schemes for Waveguide and Antenna Structures (Morgan & Claypool Publishers, San Rafael, 2006) N.V. Kantartzis, T.D. Tsiboukis, Higher Order FDTD Schemes for Waveguide and Antenna Structures (Morgan & Claypool Publishers, San Rafael, 2006)
7.
go back to reference M. Okoniewski, M. Mrozowski, M.A. Stuchly, Simple treatment of multi-term dispersion in FDTD. IEEE Microw. Guid. Wave Lett. 7(5), 121–123 (1997)CrossRef M. Okoniewski, M. Mrozowski, M.A. Stuchly, Simple treatment of multi-term dispersion in FDTD. IEEE Microw. Guid. Wave Lett. 7(5), 121–123 (1997)CrossRef
8.
go back to reference J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)MathSciNetCrossRef J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)MathSciNetCrossRef
9.
go back to reference A. Monorchio, R. Mittra, Time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microw. Guid. Wave Lett. 8(2), 93–95 (1998)CrossRef A. Monorchio, R. Mittra, Time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microw. Guid. Wave Lett. 8(2), 93–95 (1998)CrossRef
10.
go back to reference T. Noda, S. Yokoyama, Thin wire representation in finite difference time domain surge simulation. IEEE Trans. Power Delivery 17(3), 840–847 (2002)CrossRef T. Noda, S. Yokoyama, Thin wire representation in finite difference time domain surge simulation. IEEE Trans. Power Delivery 17(3), 840–847 (2002)CrossRef
11.
go back to reference J.G. Maloney, G.S. Smith, The use of surface impedance concepts in the finite-difference time-domain method. IEEE Trans. Antennas Propag. 40(1), 38–48 (1992)CrossRef J.G. Maloney, G.S. Smith, The use of surface impedance concepts in the finite-difference time-domain method. IEEE Trans. Antennas Propag. 40(1), 38–48 (1992)CrossRef
12.
go back to reference D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135–3145 (1983)CrossRef D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135–3145 (1983)CrossRef
13.
go back to reference Y. Chung, N. Dagli, An assessment of finite difference beam propagation method. IEEE J. Quantum Electron. 26(8), 1335–1339 (1990)CrossRef Y. Chung, N. Dagli, An assessment of finite difference beam propagation method. IEEE J. Quantum Electron. 26(8), 1335–1339 (1990)CrossRef
14.
go back to reference F.L. Teixeira, Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150–2166 (2008)MathSciNetCrossRef F.L. Teixeira, Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150–2166 (2008)MathSciNetCrossRef
15.
go back to reference R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45(3), 364–374 (1997)CrossRef R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45(3), 364–374 (1997)CrossRef
16.
go back to reference I.S. Maksymov, A.A. Sukhorukov, A.V. Lavrinenko, Y.S. Kivshar, Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities. IEEE Antennas Wirel. Propag. Lett. 10, 143–146 (2011)CrossRef I.S. Maksymov, A.A. Sukhorukov, A.V. Lavrinenko, Y.S. Kivshar, Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities. IEEE Antennas Wirel. Propag. Lett. 10, 143–146 (2011)CrossRef
17.
go back to reference P.M. Goorjian, A. Taflove, Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 17(3), 180–182 (1992)CrossRef P.M. Goorjian, A. Taflove, Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 17(3), 180–182 (1992)CrossRef
18.
go back to reference P.M. Goorjian, A. Taflove, R.M. Joseph, S.C. Hagness, Computational modeling of femtosecond optical solitons from Maxwell’s equations. IEEE J. Quantum Electron. 28(10), 2416–2422 (1992)CrossRef P.M. Goorjian, A. Taflove, R.M. Joseph, S.C. Hagness, Computational modeling of femtosecond optical solitons from Maxwell’s equations. IEEE J. Quantum Electron. 28(10), 2416–2422 (1992)CrossRef
19.
go back to reference K.J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25(12), 2665–2673 (1989)CrossRef K.J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25(12), 2665–2673 (1989)CrossRef
20.
go back to reference R.W. Ziolkowski, J.B. Judkins, Applications of the nonlinear finite difference time domain (NL-FDTD) method to pulse propagation in nonlinear media: self-focusing and linear-nonlinear interfaces. Radio Sci. 28(5), 901–911 (1993)CrossRef R.W. Ziolkowski, J.B. Judkins, Applications of the nonlinear finite difference time domain (NL-FDTD) method to pulse propagation in nonlinear media: self-focusing and linear-nonlinear interfaces. Radio Sci. 28(5), 901–911 (1993)CrossRef
21.
go back to reference R. Luebbers, K. Kumagai, S. Adachi, T. Uno, FDTD calculation of transient pulse propagation through a nonlinear magnetic sheet. IEEE Trans. Electromagn. Compat. 35(1), 90–94 (1993)CrossRef R. Luebbers, K. Kumagai, S. Adachi, T. Uno, FDTD calculation of transient pulse propagation through a nonlinear magnetic sheet. IEEE Trans. Electromagn. Compat. 35(1), 90–94 (1993)CrossRef
22.
go back to reference B. Toland, B. Houshmand, T. Itoh, Modeling of nonlinear active regions with the FDTD method. IEEE Microw. Guid. Wave Lett. 3(9), 333–335 (1993)CrossRef B. Toland, B. Houshmand, T. Itoh, Modeling of nonlinear active regions with the FDTD method. IEEE Microw. Guid. Wave Lett. 3(9), 333–335 (1993)CrossRef
23.
go back to reference R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. IEEE Trans. Electromagn. Compat. 36(1), 32–39 (1994)CrossRef R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. IEEE Trans. Electromagn. Compat. 36(1), 32–39 (1994)CrossRef
24.
go back to reference P. Tran, Photonic-band-structure calculation of material possessing Kerr nonlinearity. Phys. Rev. B 52, 10673–10676 (1995)CrossRef P. Tran, Photonic-band-structure calculation of material possessing Kerr nonlinearity. Phys. Rev. B 52, 10673–10676 (1995)CrossRef
25.
go back to reference D.M. Sullivan, Nonlinear FDTD formulations using Z transforms. IEEE Trans. Microwave Theory Tech. 43(3), 676–682 (1995)CrossRef D.M. Sullivan, Nonlinear FDTD formulations using Z transforms. IEEE Trans. Microwave Theory Tech. 43(3), 676–682 (1995)CrossRef
26.
go back to reference A.S. Nagra, R.A. York, FDTD analysis of wave propagation in nonlinear absorbing and gain media. IEEE Trans. Antennas Propag. 46(3), 334–340 (1998)CrossRef A.S. Nagra, R.A. York, FDTD analysis of wave propagation in nonlinear absorbing and gain media. IEEE Trans. Antennas Propag. 46(3), 334–340 (1998)CrossRef
27.
go back to reference V. Van, S.K. Chaudhuri, A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling. IEEE Trans. Microwave Theory Tech. 47(5), 540–545 (1999)CrossRef V. Van, S.K. Chaudhuri, A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling. IEEE Trans. Microwave Theory Tech. 47(5), 540–545 (1999)CrossRef
28.
go back to reference D. Sullivan, J. Liu, M. Kuzyk, Three-dimensional optical pulse simulation using the FDTD method. IEEE Trans. Microwave Theory Tech. 48(7), 1127–1133 (2000)CrossRef D. Sullivan, J. Liu, M. Kuzyk, Three-dimensional optical pulse simulation using the FDTD method. IEEE Trans. Microwave Theory Tech. 48(7), 1127–1133 (2000)CrossRef
29.
go back to reference F. Raineri, Y. Dumeige, A. Levenson, X. Letartre, Nonlinear decoupled FDTD code: phase-matching in 2D defective photonic crystal. Electron. Lett. 38(25), 1704–1706 (2002)CrossRef F. Raineri, Y. Dumeige, A. Levenson, X. Letartre, Nonlinear decoupled FDTD code: phase-matching in 2D defective photonic crystal. Electron. Lett. 38(25), 1704–1706 (2002)CrossRef
30.
go back to reference M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D kerr and raman nonlinear dispersive media. IEEE J. Quantum Electron. 40(2), 175–182 (2004)CrossRef M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D kerr and raman nonlinear dispersive media. IEEE J. Quantum Electron. 40(2), 175–182 (2004)CrossRef
31.
go back to reference M. Fujii, P. Russer, A nonlinear and dispersive APML ABC for the FD-TD methods. IEEE Microw. Wirel. Compon. Lett. 12(11), 444–446 (2002)CrossRef M. Fujii, P. Russer, A nonlinear and dispersive APML ABC for the FD-TD methods. IEEE Microw. Wirel. Compon. Lett. 12(11), 444–446 (2002)CrossRef
32.
go back to reference J.H. Greene, A. Taflove, General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14(18), 8305–8310 (2006)CrossRef J.H. Greene, A. Taflove, General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14(18), 8305–8310 (2006)CrossRef
33.
go back to reference M. Pototschnig, J. Niegemann, L. Tkeshelashvili, K. Busch, Time-domain simulations of the nonlinear Maxwell equations using operator-exponential methods. IEEE Trans. Antennas Propag. 57(2), 475–483 (2009)MathSciNetCrossRef M. Pototschnig, J. Niegemann, L. Tkeshelashvili, K. Busch, Time-domain simulations of the nonlinear Maxwell equations using operator-exponential methods. IEEE Trans. Antennas Propag. 57(2), 475–483 (2009)MathSciNetCrossRef
34.
go back to reference A. Naqavi, M. Miri, K. Mehrany, S. Khorasani, Extension of unified formulation for the FDTD simulation of nonlinear dispersive media. IEEE Photon. Technol. Lett. 22(16), 1214–1216 (2010)CrossRef A. Naqavi, M. Miri, K. Mehrany, S. Khorasani, Extension of unified formulation for the FDTD simulation of nonlinear dispersive media. IEEE Photon. Technol. Lett. 22(16), 1214–1216 (2010)CrossRef
35.
go back to reference J. Liu, M. Brio, Y. Zeng, A.R. Zakharian, W. Hoyer, S.W. Koch, J.V. Moloney, Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model. J. Comput. Phys. 229(17), 5921–5932 (2010)CrossRef J. Liu, M. Brio, Y. Zeng, A.R. Zakharian, W. Hoyer, S.W. Koch, J.V. Moloney, Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model. J. Comput. Phys. 229(17), 5921–5932 (2010)CrossRef
36.
go back to reference B.T. Caudle, M.E. Baginski, H. Kirkici, M.C. Hamilton, Three-dimensional FDTD simulation of nonlinear ferroelectric materials in rectangular waveguide. IEEE Trans. Plasma Sci. 41(2), 365–370 (2013)CrossRef B.T. Caudle, M.E. Baginski, H. Kirkici, M.C. Hamilton, Three-dimensional FDTD simulation of nonlinear ferroelectric materials in rectangular waveguide. IEEE Trans. Plasma Sci. 41(2), 365–370 (2013)CrossRef
37.
go back to reference J. Francés, J. Tervo, S. Gallego, S. Bleda, C. Neipp, A. Márquez, Split-field finite-difference time-domain method for second-harmonic generation in two-dimensionally periodic structures. J. Opt. Soc. Am. B 32(4), 664–669 (2015)CrossRef J. Francés, J. Tervo, S. Gallego, S. Bleda, C. Neipp, A. Márquez, Split-field finite-difference time-domain method for second-harmonic generation in two-dimensionally periodic structures. J. Opt. Soc. Am. B 32(4), 664–669 (2015)CrossRef
38.
go back to reference A. Mahalov, M. Moustaoui, Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids. J. Comput. Phys. 325, 98–115 (2016)MathSciNetCrossRef A. Mahalov, M. Moustaoui, Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids. J. Comput. Phys. 325, 98–115 (2016)MathSciNetCrossRef
Metadata
Title
Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain Electromagnetics: A Review
Authors
Theodoros T. Zygiridis
Nikolaos V. Kantartzis
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-89815-5_29

Premium Partner