Skip to main content
Top

2020 | Book

Finite Element Analysis for Civil Engineering with DIANA Software

insite
SEARCH

About this book

This book systematically introduces readers to the finite element analysis software DIANA (DIsplacement ANAlyzer) and its applications in civil engineering. Developed by TNO Corporation in the 1970s, DIANA is frequently used in civil engineering and engineering mechanics.

Unlike the software user’s manual, which provides a comprehensive introduction and theoretical analysis, this book presents a simplified overview of the basic background theory to help beginners master the software quickly. It also discusses GUI operation and the command console in Python language, and includes examples involving classical modeling operations to help readers review each section.

Both the book and DIANA itself are valuable resources for students and researchers in all the structural engineering fields, such as civil engineering, bridge engineering, geotechnical engineering, tunnel engineering, underground structural engineering, irrigation, municipal engineering and fire engineering.

Table of Contents

Frontmatter
Chapter 1. Introduction of DIANA
Abstract
As an initial chapter of this academic work, the background and application scope of DIANA (Displacement ANAlyzer, also named as Diana) software is introduced in brief. Besides, functions and installation are illustrated in the second part. The most important part lies in the introduction of element types, where the shapes, interpolation orders as well as integration schemes of truss elements, beam elements, plane stress and strain elements, plate bending elements, axisymmetric elements, flat and curved shell elements, solid elements, reinforcement elements, interface elements, contact elements as well as spring elements are introduced in detail one by one. In order to render more convenience to beginners, Sect. 1.4 focuses on file system and opening paths, and the working window of DianaIE is also presented in Sect. 1.5. The two key methods for DIANA preprocessing modeling procedure—the graphical user interface manipulation in DianaIE and the editing command console syntaxes in Python language—are also explicated in Sects. 1.6 and 1.7, respectively. Moreover, unit systems in DIANA are also illustrated in this chapter.
Shun Chai
Chapter 2. DIANA Material Constitutive Models and International Codes
Abstract
One of the main features of DIANA compared with other types of finite-element software lies in its abundant material constitutive model and international design codes. This chapter mainly focuses on illustrating concrete material constitutive model, steel material model and famous international concrete and steel design codes around the world. Besides, dozens of cracking models under various mechanic behavior conditions in DIANA are illustrated in turn to display the powerful functions of material specifications. Meanwhile, based on the numerical experience, modules of long-term performance concerning creep, shrinkage, heat flow and Rayleigh damping are also introduced in this part.
Shun Chai
Chapter 3. Nonlinear Analysis of DIANA Modeling Cases
Abstract
This chapter mainly focuses on exhibiting manipulation of DIANA modeling via numerical simulation. Traditional issues of concrete such as cracking analysis, time-dependent analysis, hysteresis analysis, phased analysis, dynamic analysis as well as time-history dynamic analysis concerning response modes as well as frequencies are simulated in this chapter. Moreover, the emerging tendency of ultra-high performance concrete (UHPC), stepwise loading as well as time-dependent analysis for UHPC structures are investigated and compared with ordinary C50 concrete based on the platform of solid elements and shell elements via both graphical user interface and editing command console in Python language. Phased analysis, a prominent function in DIANA, is also conducted in this chapter related with typical and commonly applied active and passive strengthening cases to validate and compare the effect of these two strengthening methods.
Shun Chai
Chapter 4. Hydration Analysis for Mass Concrete in DIANA
Abstract
Hydration reactions in mass concrete during the forming stage are often required to be taken into account owing to its high heat release. During this stage, the heat released by hydration reaction at this stage has a great influence on the performance of the concrete structures. This chapter will focus on the key feature in DIANA numerical simulation of “business card”—hydration heat simulation. Based on the two numerical cases—concrete pipe gallery segments as well as square pile blocks in large volume—heat flow module and international common specifications are used via DIANA to study the influence of hydration reaction on the structure.
Shun Chai
Chapter 5. DIANA Modeling Cases for Precast Segmental Structures
Abstract
Precast segmental structures are widely applied in current engineering owing to their rapid assembling efficiency, excellent quality control, low life-cycle cost and mitigated environmental disturbance. In this chapter, the focus of numerical simulation is put on precast segmental specimens. Targeting at the current emerging structures such as precast segmental bridges, various issues such as direct shear failure, bending failure and long-term deterioration are written as numerical engineering cases. Modeling methods for precast segmental structures in different joint shapes (shear keys as well as corbel joints) are also illustrated in this chapter. Moreover, as one of the unique and typical features for DIANA software, random field concerning forecast of precast segmental girders is specifically displayed in this chapter.
Shun Chai
Chapter 6. Proposals for Further Improvements
Abstract
During the process of manipulating DIANA software, author can feel that DIANA is a powerful finite-element analysis software typical for civil engineering, and there are continuous improvement in all the current and emerging release versions. Integrated with author’s experience, however, there are still issues that deserve further improvement although vast performance enhancement is achieved in these release versions.
Shun Chai
Metadata
Title
Finite Element Analysis for Civil Engineering with DIANA Software
Author
Shun Chai
Copyright Year
2020
Publisher
Springer Singapore
Electronic ISBN
978-981-15-2945-0
Print ISBN
978-981-15-2944-3
DOI
https://doi.org/10.1007/978-981-15-2945-0