Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

04-07-2018

Finite Element Methods for a System of Dispersive Equations

Authors: Jerry L. Bona, Hongqiu Chen, Ohannes Karakashian, Michael M. Wise

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study is concerned with the numerical approximation of periodic solutions of systems of Korteweg–de Vries type, coupled through their nonlinear terms. We construct, analyze and numerically validate two types of schemes that differ in their treatment of the third derivatives appearing in the system. One approach preserves a certain important invariant of the system, up to round-off error, while the other, somewhat more standard method introduces a measure of dissipation. For both methods, we prove convergence of a semi-discrete approximation and highlight differences in the basic assumptions required for each. Numerical experiments are also conducted with the aim of ascertaining the accuracy of the two schemes when integrations are made over long time intervals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. The Applied Mathematics Series, vol. 55. National Bureau of Standards, Gaithersburg (1965) Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. The Applied Mathematics Series, vol. 55. National Bureau of Standards, Gaithersburg (1965)
2.
3.
go back to reference Ash, J.M., Cohen, J., Wang, G.: On strongly interacting internal solitary waves. J. Fourier Anal. Appl. 2, 507–517 (1996)MathSciNetCrossRef Ash, J.M., Cohen, J., Wang, G.: On strongly interacting internal solitary waves. J. Fourier Anal. Appl. 2, 507–517 (1996)MathSciNetCrossRef
4.
go back to reference Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg–de Vries equation. Math. Comput. 40, 419–433 (1983)MathSciNetCrossRef Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg–de Vries equation. Math. Comput. 40, 419–433 (1983)MathSciNetCrossRef
5.
go back to reference Bona, J.L.: Convergence of periodic wave trains in the limit of large wavelength. Appl. Sci. Res. 37, 21–30 (1981)MathSciNetCrossRef Bona, J.L.: Convergence of periodic wave trains in the limit of large wavelength. Appl. Sci. Res. 37, 21–30 (1981)MathSciNetCrossRef
6.
go back to reference Bona, J.L., Chen, H., Karakashian, O.A.: Stability of solitary-wave solutions of systems of dispersive equations. Appl. Math. Optim. 75, 27–53 (2017)MathSciNetCrossRef Bona, J.L., Chen, H., Karakashian, O.A.: Stability of solitary-wave solutions of systems of dispersive equations. Appl. Math. Optim. 75, 27–53 (2017)MathSciNetCrossRef
7.
go back to reference Bona, J.L., Chen, H., Karakashian, O.A.: Instability of solitary-wave solutions of systems of coupled KdV equations: theory and numerical results, Preprint Bona, J.L., Chen, H., Karakashian, O.A.: Instability of solitary-wave solutions of systems of coupled KdV equations: theory and numerical results, Preprint
8.
go back to reference Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation. Math. Comput. 82, 1401–1432 (2013)MathSciNetCrossRef Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation. Math. Comput. 82, 1401–1432 (2013)MathSciNetCrossRef
9.
go back to reference Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: part I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)MathSciNetCrossRef Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: part I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)MathSciNetCrossRef
10.
go back to reference Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: Part II. Nonlinear theory. Nonlinearity 17, 925–952 (2004)MathSciNetCrossRef Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: Part II. Nonlinear theory. Nonlinearity 17, 925–952 (2004)MathSciNetCrossRef
11.
go back to reference Bona, J.L., Cohen, J., Wang, G.: Global well-posedness of a system of KdV-type with coupled quadratic nonlinearities. Nagoya Math. J. 215, 67–149 (2014)MathSciNetCrossRef Bona, J.L., Cohen, J., Wang, G.: Global well-posedness of a system of KdV-type with coupled quadratic nonlinearities. Nagoya Math. J. 215, 67–149 (2014)MathSciNetCrossRef
12.
go back to reference Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–226 (2007)MathSciNetCrossRef Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–226 (2007)MathSciNetCrossRef
13.
go back to reference Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. II. Evolution of radiating solitary waves. Nonlinearity 21, 2825–2848 (2008)MathSciNetCrossRef Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. II. Evolution of radiating solitary waves. Nonlinearity 21, 2825–2848 (2008)MathSciNetCrossRef
14.
go back to reference Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A 278, 555–601 (1975)MathSciNetCrossRef Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A 278, 555–601 (1975)MathSciNetCrossRef
15.
go back to reference Bona, J.L., Soyeur, A.: On the stability of solitary-wave solutions of model equations for long waves. J. Nonlinear Sci. 4, 449–470 (1994)MathSciNetCrossRef Bona, J.L., Soyeur, A.: On the stability of solitary-wave solutions of model equations for long waves. J. Nonlinear Sci. 4, 449–470 (1994)MathSciNetCrossRef
16.
go back to reference Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2002)CrossRef Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2002)CrossRef
17.
go back to reference Chen, H.: Long-period limit of nonlinear dispersive waves. Differ. Integral Equ. 19, 463–480 (2006)MathSciNetMATH Chen, H.: Long-period limit of nonlinear dispersive waves. Differ. Integral Equ. 19, 463–480 (2006)MathSciNetMATH
18.
go back to reference Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1980)MATH Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1980)MATH
19.
go back to reference Cheng, Y., Shu, C.-W.: A discontinuous finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)MathSciNetCrossRef Cheng, Y., Shu, C.-W.: A discontinuous finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)MathSciNetCrossRef
20.
go back to reference Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness of KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Am. Math. Soc. 16, 705–749 (2003)MathSciNetCrossRef Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness of KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Am. Math. Soc. 16, 705–749 (2003)MathSciNetCrossRef
21.
go back to reference Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. North Holland, Amsterdam (1984)MATH Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. North Holland, Amsterdam (1984)MATH
22.
go back to reference Gear, J.A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65, 235–258 (1984)MathSciNetCrossRef Gear, J.A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65, 235–258 (1984)MathSciNetCrossRef
23.
go back to reference Hakkaev, S.: Stability and instability of solitary wave solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony type. Serdica Math. J. 29, 337–354 (2003)MathSciNetMATH Hakkaev, S.: Stability and instability of solitary wave solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony type. Serdica Math. J. 29, 337–354 (2003)MathSciNetMATH
24.
go back to reference Kappeler, T., Topalov, P.: Global well-posedness of KdV in \(H^{-1}({\mathbb{T}}, {\mathbb{R}})\). Duke Math. J. 135, 327–360 (2006)MathSciNetCrossRef Kappeler, T., Topalov, P.: Global well-posedness of KdV in \(H^{-1}({\mathbb{T}}, {\mathbb{R}})\). Duke Math. J. 135, 327–360 (2006)MathSciNetCrossRef
25.
go back to reference Karakashian, O.A., Makridakis, C.: A posteriori error estimates for the generalized Korteweg–de Vries equation. Math. Comput. 84, 1145–1167 (2015)CrossRef Karakashian, O.A., Makridakis, C.: A posteriori error estimates for the generalized Korteweg–de Vries equation. Math. Comput. 84, 1145–1167 (2015)CrossRef
26.
go back to reference Karakashian, O.A., Xing, Y.: A posteriori error estimates for the Generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)MathSciNetCrossRef Karakashian, O.A., Xing, Y.: A posteriori error estimates for the Generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)MathSciNetCrossRef
27.
go back to reference Liu, H., Yi, N.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)MathSciNetCrossRef Liu, H., Yi, N.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)MathSciNetCrossRef
28.
go back to reference Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby Waves. J. Atmos. Sci. 60, 1809–1821 (2003)MathSciNetCrossRef Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby Waves. J. Atmos. Sci. 60, 1809–1821 (2003)MathSciNetCrossRef
30.
31.
go back to reference Wahlbin, L.B.: Dissipative Galerkin method for the numerical solution of first order hyperbolic equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a Symposium at the Mathematics Research Center, the University of Wisconsin Madison, pp. 147-169. Academic Press (1974) Wahlbin, L.B.: Dissipative Galerkin method for the numerical solution of first order hyperbolic equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a Symposium at the Mathematics Research Center, the University of Wisconsin Madison, pp. 147-169. Academic Press (1974)
32.
go back to reference Winther, R.: A conservative finite element method for the Korteweg–de Vries equation. Math. Comput. 34, 23–43 (1980)MathSciNetMATH Winther, R.: A conservative finite element method for the Korteweg–de Vries equation. Math. Comput. 34, 23–43 (1980)MathSciNetMATH
33.
go back to reference Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)MathSciNetCrossRef Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)MathSciNetCrossRef
34.
go back to reference Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRef Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRef
Metadata
Title
Finite Element Methods for a System of Dispersive Equations
Authors
Jerry L. Bona
Hongqiu Chen
Ohannes Karakashian
Michael M. Wise
Publication date
04-07-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0767-x

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner