Skip to main content
Top
Published in: Strength of Materials 2/2021

08-07-2021

Finite Element Model of Laminated Shells of Composite Materials

Authors: V. V. Astanin, S. Yu. Bogdan

Published in: Strength of Materials | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Finite element models of fiber-reinforced polymer composite elements as a characteristic part of layered structures are considered in order to adapt them to the developed method of calculations of structural elements as multilayered orthotropic bodies and to compare the obtained results with the experimental ones. The problem is solved numerically and analytically using the finite-element method. Finite element meshes of models are constructed by the adaptive method with the introduction of small additional elements in the critical zones in each cycle of the computational analysis. The complex structure of multilayer composite materials is taken into account. The physical and mechanical characteristics of composite materials obtained by experimental studies on samples made by autoclave molding and thermo-vacuum method according to international standards are used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. J. Broutman and R. H. Krock (Eds.), Composite Materials, in 8 volumes, Vol. 2: J. Sendeckyi (Ed.), Mechanics of Composite Materials, Academic Press, New York (1974). L. J. Broutman and R. H. Krock (Eds.), Composite Materials, in 8 volumes, Vol. 2: J. Sendeckyi (Ed.), Mechanics of Composite Materials, Academic Press, New York (1974).
2.
go back to reference E. Fitzer, Carbon Fibres and Their Composites, Springer-Verlag, Berlin–Heidelberg (1985).CrossRef E. Fitzer, Carbon Fibres and Their Composites, Springer-Verlag, Berlin–Heidelberg (1985).CrossRef
3.
go back to reference V. F. Yatsenko, Strength of Composite Materials [in Russian], Vyshcha Shkola, Kiev (1988). V. F. Yatsenko, Strength of Composite Materials [in Russian], Vyshcha Shkola, Kiev (1988).
4.
go back to reference J. R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Springer Netherlands (1986). J. R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Springer Netherlands (1986).
5.
go back to reference T. Fujii and M. Dzako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982). T. Fujii and M. Dzako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).
6.
go back to reference A. S. Gorodetskii and I. D. Evzerov, Computer Models of Structures [in Russian], Fakt, Kiev (2005). A. S. Gorodetskii and I. D. Evzerov, Computer Models of Structures [in Russian], Fakt, Kiev (2005).
8.
go back to reference V. V. Vasil’ev and Yu. M. Tarnopol’skii (Eds.), Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990). V. V. Vasil’ev and Yu. M. Tarnopol’skii (Eds.), Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990).
9.
go back to reference ISO 13586:2000. Plastics – Determination of Fracture Toughness (GIC and KIC) – Linear Elastic Fracture Mechanics (LEFM) Approach, European Committee for Standardization (2000). ISO 13586:2000. Plastics – Determination of Fracture Toughness (GIC and KIC) – Linear Elastic Fracture Mechanics (LEFM) Approach, European Committee for Standardization (2000).
10.
go back to reference ISO 527-2:1993. Plastics – Determination of Tensile Properties – Part 2: Test Conditions for Moulding and Extrusion Plastics, European Committee for Standardization (1993). ISO 527-2:1993. Plastics – Determination of Tensile Properties – Part 2: Test Conditions for Moulding and Extrusion Plastics, European Committee for Standardization (1993).
11.
go back to reference ISO 14129:1997. Fibre-Reinforced Plastic Composites. Determination of the In-Plane Shear Stress/Shear Strain Response, Including the In-Plane Shear Modulus and Strength by the _45_ Tension Test Method, European Committee for Standardization (1997). ISO 14129:1997. Fibre-Reinforced Plastic Composites. Determination of the In-Plane Shear Stress/Shear Strain Response, Including the In-Plane Shear Modulus and Strength by the _45_ Tension Test Method, European Committee for Standardization (1997).
12.
go back to reference ISO 14130:1997. Fiber-Reinforced Plastic Composites – Determination of Apparent Interlaminar Shear Strength by Short-Beam Method, European Committee for Standardization (1997). ISO 14130:1997. Fiber-Reinforced Plastic Composites – Determination of Apparent Interlaminar Shear Strength by Short-Beam Method, European Committee for Standardization (1997).
13.
go back to reference ISO 14126:1999. Fibre-Reinforced Plastic Composites – Determination of Compressive Properties in the In-Plane Direction, European Committee for Standardization (1999). ISO 14126:1999. Fibre-Reinforced Plastic Composites – Determination of Compressive Properties in the In-Plane Direction, European Committee for Standardization (1999).
14.
go back to reference ISO 604:2003. Plastics – Determination of Compressive Properties, European Committee for Standardization (2003). ISO 604:2003. Plastics – Determination of Compressive Properties, European Committee for Standardization (2003).
15.
go back to reference ISO 1183-1:2012. Plastics – Methods for Determining the Density of Non-Cellular Plastics – Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method, European Committee for Standardization (2012). ISO 1183-1:2012. Plastics – Methods for Determining the Density of Non-Cellular Plastics – Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method, European Committee for Standardization (2012).
16.
go back to reference S. G. Lekhnitskii, Theory of Anisotropic Body Elasticity [in Russian], Nauka, Moscow (1977). S. G. Lekhnitskii, Theory of Anisotropic Body Elasticity [in Russian], Nauka, Moscow (1977).
19.
go back to reference V. V. Astanin, M. M. Borodachov, S. Yu. Bogdan, et al., “Limit State of a composite three-layered cylindrical shell under internal pressure,” Strength Mater., 47, no. 4, 544–552 (2015), 10.1007/s11223-015-9688-1. V. V. Astanin, M. M. Borodachov, S. Yu. Bogdan, et al., “Limit State of a composite three-layered cylindrical shell under internal pressure,” Strength Mater., 47, no. 4, 544–552 (2015), 10.1007/s11223-015-9688-1.
Metadata
Title
Finite Element Model of Laminated Shells of Composite Materials
Authors
V. V. Astanin
S. Yu. Bogdan
Publication date
08-07-2021
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00284-0

Other articles of this Issue 2/2021

Strength of Materials 2/2021 Go to the issue

Premium Partners