Skip to main content
Top

2023 | OriginalPaper | Chapter

3. Finite Element Model Updating Using a Shuffled Complex Evolution Markov Chain Algorithm

Authors : Marwan Sherri, Ilyes Boulkaibet, Tshilidzi Marwala, Michael I. Friswell

Published in: Model Validation and Uncertainty Quantification, Volume 3

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a probabilistic-based evolution Markov chain algorithm is used for updating finite element models. The Bayesian approaches are well-known algorithms used for quantifying uncertainties associated with structural systems and several other engineering domains. In this approach, the unknown parameters and their associated uncertainties are obtained by solving the posterior distribution function, which is difficult to attain analytically due to the complexity of the structural system as well as the size of the updating parameters. Alternatively, Markov chain Monte Carlo (MCMC) algorithms are very popular numerical algorithms used to solve the Bayesian updating problem. These algorithms can approximate the posterior distribution function and obtain the unknown parameters vector and its associated uncertainty. The Metropolis-Hastings (M-H) algorithm, which is the most common MCMC algorithms, is used to obtain a sequence of random samples from a posterior probability distribution. Different approaches are proposed to enhance the performance of the Metropolis-Hastings where M-H depends on a single-chain and random-walk step to propose new samples. The evolutionary-based algorithms are extensively used for complex optimization problems where these algorithms can evolve a population of solutions and keep the fittest solution to the last. In this paper, a population-based Markov chain algorithm is used to approximate the posterior distribution function by drawing new samples using a multi-chain procedure for the Bayesian finite element model updating (FEMU) problem. In this algorithm, the M-H method is combined with the Scuffled Complex Evolution (SCE) strategy to propose new samples where a proposed sample is established through a stochastic move, survival for the fittest procedure, and the complex shuffling process. The proposed SCE-MC algorithm is used for FEMU problems where a real structural system is investigated and the obtained results are compared with other MCMC samplers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hughes, T.J.: The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Mineola (2012) Hughes, T.J.: The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Mineola (2012)
2.
go back to reference Rao, S.S.: The finite element method in engineering. Butterworth-heinemann, Oxford (2017) Rao, S.S.: The finite element method in engineering. Butterworth-heinemann, Oxford (2017)
3.
go back to reference Marwala, T., Boulkaibet, I., Adhikari, S.: Probabilistic finite element model updating using Bayesian statistics: applications to aeronautical and mechanical engineering. Wiley, Chichester (2016)CrossRef Marwala, T., Boulkaibet, I., Adhikari, S.: Probabilistic finite element model updating using Bayesian statistics: applications to aeronautical and mechanical engineering. Wiley, Chichester (2016)CrossRef
4.
go back to reference Marwala, T.: Finite element model updating using computational intelligence techniques: applications to structural dynamics. Springer, London (2010)CrossRef Marwala, T.: Finite element model updating using computational intelligence techniques: applications to structural dynamics. Springer, London (2010)CrossRef
5.
go back to reference Friswell, M., Mottershead, J.E.: Finite element model updating in structural dynamics. Springer, Dordrecht (2013)MATH Friswell, M., Mottershead, J.E.: Finite element model updating in structural dynamics. Springer, Dordrecht (2013)MATH
6.
go back to reference Zárate, B.A., Caicedo, J.M.J.E.S.: Finite element model updating: multiple alternatives. Eng. Struct. 30(12), 3724–3730 (2008)CrossRef Zárate, B.A., Caicedo, J.M.J.E.S.: Finite element model updating: multiple alternatives. Eng. Struct. 30(12), 3724–3730 (2008)CrossRef
7.
go back to reference Jaishi, B., Ren, W.-X.: Structural finite element model updating using ambient vibration test results. J. Struct. Eng. 131(4), 617–628 (2005)CrossRef Jaishi, B., Ren, W.-X.: Structural finite element model updating using ambient vibration test results. J. Struct. Eng. 131(4), 617–628 (2005)CrossRef
8.
go back to reference Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using Hamiltonian Monte Carlo techniques. Inverse Probl. Sci. Eng. 25(7), 1042–1070 (2017)MathSciNetCrossRef Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using Hamiltonian Monte Carlo techniques. Inverse Probl. Sci. Eng. 25(7), 1042–1070 (2017)MathSciNetCrossRef
9.
go back to reference Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B. 57(3), 473–484 (1995)MATH Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B. 57(3), 473–484 (1995)MATH
10.
go back to reference Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 57(1), 97–109 (1970)MathSciNetCrossRef Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 57(1), 97–109 (1970)MathSciNetCrossRef
11.
go back to reference Geyer, C.J.: Practical Markov chain Monte Carlo. Stat. Sci. 5, 473–483 (1992) Geyer, C.J.: Practical Markov chain Monte Carlo. Stat. Sci. 5, 473–483 (1992)
12.
go back to reference Sherri, M., Boulkaibet, I., Marwala, T., Friswell, M.: A differential evolution Markov chain Monte Carlo algorithm for Bayesian model updating. In: Special topics in structural dynamics, volume 5, pp. 115–125. Springer (2019)CrossRef Sherri, M., Boulkaibet, I., Marwala, T., Friswell, M.: A differential evolution Markov chain Monte Carlo algorithm for Bayesian model updating. In: Special topics in structural dynamics, volume 5, pp. 115–125. Springer (2019)CrossRef
13.
go back to reference Sherri, M., Boulkaibet, I., Marwala, T., Friswell, M.: Bayesian finite element model updating using a population Markov Chain Monte Carlo algorithm. In: Special topics in structural dynamics & experimental techniques, volume 5, pp. 259–269. Springer (2021)CrossRef Sherri, M., Boulkaibet, I., Marwala, T., Friswell, M.: Bayesian finite element model updating using a population Markov Chain Monte Carlo algorithm. In: Special topics in structural dynamics & experimental techniques, volume 5, pp. 259–269. Springer (2021)CrossRef
14.
go back to reference Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using an evolutionary Markov Chain Monte Carlo algorithm. In: Dynamics of civil structures, volume 2, pp. 245–253. Springer (2015)CrossRef Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using an evolutionary Markov Chain Monte Carlo algorithm. In: Dynamics of civil structures, volume 2, pp. 245–253. Springer (2015)CrossRef
15.
go back to reference Boulkaibet, I., Marwala, T., Mthembu, L., Friswell, M., Adhikari, S.: Sampling techniques in Bayesian finite element model updating. In: Topics in model validation and uncertainty quantification, volume 4, pp. 75–83. Springer (2012)CrossRef Boulkaibet, I., Marwala, T., Mthembu, L., Friswell, M., Adhikari, S.: Sampling techniques in Bayesian finite element model updating. In: Topics in model validation and uncertainty quantification, volume 4, pp. 75–83. Springer (2012)CrossRef
16.
go back to reference Boulkaibet, I.: Finite element model updating using Markov Chain Monte Carlo techniques. University of Johannesburg (2014) Boulkaibet, I.: Finite element model updating using Markov Chain Monte Carlo techniques. University of Johannesburg (2014)
17.
go back to reference Dearden, R., Friedman, N., Andre, D.: Model-based Bayesian exploration. preprint arXiv:1301.6690 (2013) Dearden, R., Friedman, N., Andre, D.: Model-based Bayesian exploration. preprint arXiv:1301.6690 (2013)
18.
go back to reference Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S.: A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 39(8) (2003) Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S.: A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 39(8) (2003)
19.
go back to reference Vrugt, J.A., Gupta, H.V.: A shuffled complex evolution metropolis algorithm for estimating. Calibration Watershed Model. 6, 105 (2003) Vrugt, J.A., Gupta, H.V.: A shuffled complex evolution metropolis algorithm for estimating. Calibration Watershed Model. 6, 105 (2003)
20.
go back to reference Duan, Q., Sorooshian, S., Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015–1031 (1992)CrossRef Duan, Q., Sorooshian, S., Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015–1031 (1992)CrossRef
21.
go back to reference Duan, Q., Gupta, V.K., Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76(3), 501–521 (1993)MathSciNetCrossRef Duan, Q., Gupta, V.K., Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76(3), 501–521 (1993)MathSciNetCrossRef
22.
go back to reference Hou, R., Xia, Y., Zhou, X.: Structural damage detection based on l1 regularization using natural frequencies and mode shapes. Struct. Control Health Monit. 25(3), e2107 (2018)CrossRef Hou, R., Xia, Y., Zhou, X.: Structural damage detection based on l1 regularization using natural frequencies and mode shapes. Struct. Control Health Monit. 25(3), e2107 (2018)CrossRef
Metadata
Title
Finite Element Model Updating Using a Shuffled Complex Evolution Markov Chain Algorithm
Authors
Marwan Sherri
Ilyes Boulkaibet
Tshilidzi Marwala
Michael I. Friswell
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04090-0_3