Skip to main content
Top

2019 | OriginalPaper | Chapter

Finite Element Study of Ceramic Matrix Piezocomposites with Mechanical Interface Properties by the Effective Moduli Method with Different Types of Boundary Conditions

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper deals with the problem of finding the effective moduli of a ceramic matrix composite with surface stresses on the interphase boundaries. The composite consists of a PZT ceramic matrix, elastic inclusions and interface boundaries. It is assumed that the interface stresses depend on the surface strains according to the Gurtin–Murdoch model. This model describes the size effects and contributes to the total stress-strain state only for nanodimensional inclusions. The homogenization problem was set and solved with the help of the effective moduli method for piezoelectric composites with interface boundaries and finite-element technologies used for simulating the representative volumes and solving the resulting boundary-value electroelastic problems. Here in the effective moduli method, different combinations of linear first-kind boundary conditions and constant second-kind boundary conditions for mechanical and electric fields were considered. The representative volume consisted of cubic finite elements with the material properties of the matrix or inclusions and also included the surface elements on the interfaces. Bulk elements were supplied with the material properties of the matrix or inclusions, using a simple random method. In the numerical example, the influence of the fraction of inclusions, the interface stresses and boundary conditions on the effective electroelastic modules were analysed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bobrov, S.V., Nasedkin, A.V., Rybjanets, A.N.: Finite element modeling of effective moduli of porous and polycrystalline composite piezoceramics. In: Topping, B.H.V., Montero, G., Montenegro, R. (eds.) Proceedings VIII International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 107 (2006) Bobrov, S.V., Nasedkin, A.V., Rybjanets, A.N.: Finite element modeling of effective moduli of porous and polycrystalline composite piezoceramics. In: Topping, B.H.V., Montero, G., Montenegro, R. (eds.) Proceedings VIII International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 107 (2006)
2.
go back to reference Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale. Math. Mech. Solids. 20, 1130–1145 (2015)CrossRef Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale. Math. Mech. Solids. 20, 1130–1145 (2015)CrossRef
3.
go back to reference Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)CrossRef Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)CrossRef
4.
go back to reference Dai, Sh., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011) Dai, Sh., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011)
5.
go back to reference Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008) Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)
6.
go back to reference Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)CrossRef Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)CrossRef
7.
go back to reference Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)CrossRef Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)CrossRef
8.
go back to reference Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Phys. 55(6), 279–282 (2010)CrossRef Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Phys. 55(6), 279–282 (2010)CrossRef
9.
go back to reference Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoupled and coupled surface effects. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 1–18. Springer, Singapore (2017) Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoupled and coupled surface effects. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 1–18. Springer, Singapore (2017)
10.
go back to reference Fang, X.-Q., Zhu, C.-S., Liu, J.-X., Liu, X.-L.: Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B: Condens. Matter. 529, 41–56 (2018)CrossRef Fang, X.-Q., Zhu, C.-S., Liu, J.-X., Liu, X.-L.: Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B: Condens. Matter. 529, 41–56 (2018)CrossRef
11.
go back to reference Gu, S.-T., He, Q.-C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids. 59, 1413–1426 (2011) Gu, S.-T., He, Q.-C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids. 59, 1413–1426 (2011)
12.
go back to reference Gu, S.-T., He, Q.-C., Pensee, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)CrossRef Gu, S.-T., He, Q.-C., Pensee, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)CrossRef
13.
go back to reference Gu, S.-T., Liu, J.-T., He. Q.-C.: Piezoelectric composites: Imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014) Gu, S.-T., Liu, J.-T., He. Q.-C.: Piezoelectric composites: Imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)
14.
go back to reference Gu, S.-T., Liu, J.-T., He. Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014) Gu, S.-T., Liu, J.-T., He. Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)
15.
go back to reference Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)CrossRef Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)CrossRef
16.
go back to reference Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B. 243(4), R22–R24 (2006)CrossRef Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B. 243(4), R22–R24 (2006)CrossRef
17.
go back to reference Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50, 2561–2572 (2013)CrossRef Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50, 2561–2572 (2013)CrossRef
18.
go back to reference Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)CrossRef Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)CrossRef
19.
go back to reference Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018) Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018)
20.
go back to reference Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018) Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)
21.
go back to reference Malakooti, M.H., Sodano, H.A.: Multi-inclusion modeling of multiphase piezoelectric composites. Compos.: Part B. 47, 181–189 (2013) Malakooti, M.H., Sodano, H.A.: Multi-inclusion modeling of multiphase piezoelectric composites. Compos.: Part B. 47, 181–189 (2013)
22.
go back to reference Nasedkin, A.V.: Some homogenization models of nanosized piezoelectric composite materials of types ceramics-pores and ceramics-ceramics with surface effects. In: Guemes, A., Benjeddou, A., Rodellar, J., Leng, J. (eds.) VIII ECCOMAS Thematic Conference on Smart Structures and Materials, VI Int. Conf. on Smart Materials and Nanotechnology in Engineering-SMART 2017, 5–8 June 2017, Madrid, Spain, pp. 1137–1147. CIMNE, Barcelona, Spain (2017) Nasedkin, A.V.: Some homogenization models of nanosized piezoelectric composite materials of types ceramics-pores and ceramics-ceramics with surface effects. In: Guemes, A., Benjeddou, A., Rodellar, J., Leng, J. (eds.) VIII ECCOMAS Thematic Conference on Smart Structures and Materials, VI Int. Conf. on Smart Materials and Nanotechnology in Engineering-SMART 2017, 5–8 June 2017, Madrid, Spain, pp. 1137–1147. CIMNE, Barcelona, Spain (2017)
23.
go back to reference Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)CrossRef Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)CrossRef
24.
go back to reference Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Series Advanced Structured Materials, vol. 59, pp. 107–122. Springer, Singapore (2017) Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Series Advanced Structured Materials, vol. 59, pp. 107–122. Springer, Singapore (2017)
25.
go back to reference Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling of effective properties of elastic materials with random nanosized porosities. ycisl. meh. splos. sred – Comput. Continuum Mech. 10(4), 375–387 (2017) Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling of effective properties of elastic materials with random nanosized porosities. ycisl. meh. splos. sred – Comput. Continuum Mech. 10(4), 375–387 (2017)
26.
go back to reference Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred – Comput. Continuum Mech. 7(1), 100–109 (2014) Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred – Comput. Continuum Mech. 7(1), 100–109 (2014)
27.
go back to reference Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publication, NY (2011) Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publication, NY (2011)
28.
go back to reference Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and Their Applications, pp. 185–202. Nova Science Publ., NY (2013) Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and Their Applications, pp. 185–202. Nova Science Publ., NY (2013)
29.
go back to reference Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China: Phys. Mech. Astron. 54(4), 564–573 (2011) Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China: Phys. Mech. Astron. 54(4), 564–573 (2011)
30.
go back to reference Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)CrossRef Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)CrossRef
31.
go back to reference Rybyanets, A.N., Konstantinov, G.M., Naumenko, A.A., Shvetsova, N.A., Makarev, D.I., Lugovaya, M.A.: Elastic, dielectric, and piezoelectric properties of ceramic lead zirconate titanate/\(\alpha \)-Al\(_2\)O\(_3\) composites. Phys. Solid State. 57(3), 527–530 (2015) Rybyanets, A.N., Konstantinov, G.M., Naumenko, A.A., Shvetsova, N.A., Makarev, D.I., Lugovaya, M.A.: Elastic, dielectric, and piezoelectric properties of ceramic lead zirconate titanate/\(\alpha \)-Al\(_2\)O\(_3\) composites. Phys. Solid State. 57(3), 527–530 (2015)
32.
go back to reference Rybyanets, A.N., Naumenko, A.A., Konstantinov, G.M., Shvetsova, N.A., Lugovaya, M.A.: Elastic loss and dispersion in ceramic-matrix piezocomposites. Phys. Solid State. 57(3), 558–562 (2015)CrossRef Rybyanets, A.N., Naumenko, A.A., Konstantinov, G.M., Shvetsova, N.A., Lugovaya, M.A.: Elastic loss and dispersion in ceramic-matrix piezocomposites. Phys. Solid State. 57(3), 558–562 (2015)CrossRef
33.
go back to reference Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016) Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016)
34.
go back to reference Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)CrossRef Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)CrossRef
35.
go back to reference Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids. 65, 138–156 (2014)CrossRef Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids. 65, 138–156 (2014)CrossRef
36.
go back to reference Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222, 59–67 (2011)CrossRef Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222, 59–67 (2011)CrossRef
37.
go back to reference Zhao, D., Liu, J.L., Wang, L.: Nonlinear free vibration of a cantilever nanobeam with surface effects: semi-analytical solutions. Int. J. Mech. Sci. 113, 184–195 (2016)CrossRef Zhao, D., Liu, J.L., Wang, L.: Nonlinear free vibration of a cantilever nanobeam with surface effects: semi-analytical solutions. Int. J. Mech. Sci. 113, 184–195 (2016)CrossRef
Metadata
Title
Finite Element Study of Ceramic Matrix Piezocomposites with Mechanical Interface Properties by the Effective Moduli Method with Different Types of Boundary Conditions
Authors
G. Iovane
A. V. Nasedkin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17470-5_12