Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2017

18-07-2016 | Original Research

Finite time stability analysis of systems based on delayed exponential matrix

Authors: Zijian Luo, JinRong Wang

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we analyze finite time stability for a class of differential equations with finite delay. Some sufficient conditions for the finite time stability results are derived based on delayed matrix exponential approach and Jensen’s and Coppel’s inequalities. Finally, we demonstrate the validity of designed method and make some discussions by using a numerical example.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Q., Liu, X.Z.: Exponential stability for implusive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462–473 (2005)MathSciNetCrossRefMATH Wang, Q., Liu, X.Z.: Exponential stability for implusive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462–473 (2005)MathSciNetCrossRefMATH
2.
go back to reference Wang, Q., Liu, X.Z.: Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method. Appl. Math. Lett. 20, 839–845 (2007)MathSciNetCrossRefMATH Wang, Q., Liu, X.Z.: Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method. Appl. Math. Lett. 20, 839–845 (2007)MathSciNetCrossRefMATH
3.
go back to reference Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)MathSciNetMATH Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)MathSciNetMATH
4.
go back to reference Zhang, G.L., Song, M.H., Liu, M.Z.: Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J. Compu. Appl. Math. 285, 32–44 (2015)MathSciNetCrossRefMATH Zhang, G.L., Song, M.H., Liu, M.Z.: Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J. Compu. Appl. Math. 285, 32–44 (2015)MathSciNetCrossRefMATH
5.
go back to reference Lazarević, M.P., Debeljković, D., Nenadić, Z.: Finite-time stability of delayed systems. IMA J. Math. Control. Inf. 17, 101–109 (2000)MathSciNetCrossRefMATH Lazarević, M.P., Debeljković, D., Nenadić, Z.: Finite-time stability of delayed systems. IMA J. Math. Control. Inf. 17, 101–109 (2000)MathSciNetCrossRefMATH
6.
go back to reference Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay system: Grownwall’s approach. Math. Comput. Model. 49, 475–481 (2009)CrossRefMATH Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay system: Grownwall’s approach. Math. Comput. Model. 49, 475–481 (2009)CrossRefMATH
7.
go back to reference Wang, Q., Lu, D.C., Fang, Y.Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)MathSciNetCrossRefMATH Wang, Q., Lu, D.C., Fang, Y.Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)MathSciNetCrossRefMATH
8.
go back to reference Debeljković, D., Stojanović, S., Jovanović, A.: Further results on finite time and practical stability of linear continuous time delay systems. FME Trans. 41, 241–249 (2013) Debeljković, D., Stojanović, S., Jovanović, A.: Further results on finite time and practical stability of linear continuous time delay systems. FME Trans. 41, 241–249 (2013)
9.
go back to reference Debeljković, D., Stojanović, S., Jovanović, A.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013) Debeljković, D., Stojanović, S., Jovanović, A.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013)
10.
go back to reference Gu, K.: An integral inequality in the stability problem of time-delay systems, decision and control. In: Proceedings of the 39th IEEE Conference, IEEE, vol. 3, pp. 2805–2810 (2000) Gu, K.: An integral inequality in the stability problem of time-delay systems, decision and control. In: Proceedings of the 39th IEEE Conference, IEEE, vol. 3, pp. 2805–2810 (2000)
11.
go back to reference Debeljkovic, D.L., Stojanovic, S.B., Jovanovic, A.M.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013) Debeljkovic, D.L., Stojanovic, S.B., Jovanovic, A.M.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013)
12.
go back to reference Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 84, 2117–2127 (2011)MathSciNetCrossRefMATH Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 84, 2117–2127 (2011)MathSciNetCrossRefMATH
13.
go back to reference Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37, 1459–1463 (2001)CrossRefMATH Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37, 1459–1463 (2001)CrossRefMATH
14.
go back to reference Liu, H., Zhou, G., Lei, T., Tian, F.: Finite-time stability of linear time-varying continuous system with time-delay, In: 27th Proceeding of Chinese Control and Decision Conference, vol. 23–25, pp. 6063–6068 (2015) Liu, H., Zhou, G., Lei, T., Tian, F.: Finite-time stability of linear time-varying continuous system with time-delay, In: 27th Proceeding of Chinese Control and Decision Conference, vol. 23–25, pp. 6063–6068 (2015)
15.
16.
go back to reference Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A.: Exponential \(H_{\infty }\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci. China Technol. Sci. 59, 387–402 (2016)CrossRef Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A.: Exponential \(H_{\infty }\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci. China Technol. Sci. 59, 387–402 (2016)CrossRef
17.
go back to reference Li, D., Cao, J.: Global finite-time output feedback synchronization for a class of high-order nonlinear systems. Nonlinear Dynam. 82, 1027–1037 (2015)MathSciNetCrossRefMATH Li, D., Cao, J.: Global finite-time output feedback synchronization for a class of high-order nonlinear systems. Nonlinear Dynam. 82, 1027–1037 (2015)MathSciNetCrossRefMATH
18.
go back to reference Wu, Y., Cao, J., Alofi, A., Abdullah, A.L.M., Elaiw, A.: Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Netw. 69, 135–143 (2015)CrossRef Wu, Y., Cao, J., Alofi, A., Abdullah, A.L.M., Elaiw, A.: Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Netw. 69, 135–143 (2015)CrossRef
19.
go back to reference Khusainov, DYa., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina. 17, 101–108 (2003)MathSciNetMATH Khusainov, DYa., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina. 17, 101–108 (2003)MathSciNetMATH
20.
go back to reference Khusainov, DYa., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. J. Appl. Math. 2, 210–221 (2005)MathSciNetMATH Khusainov, DYa., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. J. Appl. Math. 2, 210–221 (2005)MathSciNetMATH
21.
go back to reference Medveď, M., Pospišil, M., Škripková, L.: Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. 74, 3903–3911 (2011)MathSciNetCrossRefMATH Medveď, M., Pospišil, M., Škripková, L.: Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. 74, 3903–3911 (2011)MathSciNetCrossRefMATH
22.
go back to reference Medveď, M., Pospišil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 75, 3348–3363 (2012)MathSciNetCrossRefMATH Medveď, M., Pospišil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 75, 3348–3363 (2012)MathSciNetCrossRefMATH
23.
go back to reference Diblík, J., Fečkan, M., Pospišil, M.: Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58–69 (2013)MathSciNetCrossRefMATH Diblík, J., Fečkan, M., Pospišil, M.: Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58–69 (2013)MathSciNetCrossRefMATH
24.
go back to reference Diblík, J., Khusainov, DYa., Baštinec, J., Sirenko, A.S.: Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 51, 68–73 (2016)MathSciNetCrossRefMATH Diblík, J., Khusainov, DYa., Baštinec, J., Sirenko, A.S.: Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 51, 68–73 (2016)MathSciNetCrossRefMATH
25.
go back to reference Lozinskii, S.M.: Error estimate for numerical integration of ordinary differential equations. I. Izv. Vyssh. Uchebn. Zved., Mat. 5, 52–90 (1958)MATH Lozinskii, S.M.: Error estimate for numerical integration of ordinary differential equations. I. Izv. Vyssh. Uchebn. Zved., Mat. 5, 52–90 (1958)MATH
26.
go back to reference Dahlquist, G.: Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, vol. 130. Trans. Roy. Inst. Tech., Stokholm (1959)MATH Dahlquist, G.: Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, vol. 130. Trans. Roy. Inst. Tech., Stokholm (1959)MATH
27.
go back to reference Coppel, W.A.: Stability and asymptotic behavior of differential equations. DC Heath, Boston (1965)MATH Coppel, W.A.: Stability and asymptotic behavior of differential equations. DC Heath, Boston (1965)MATH
Metadata
Title
Finite time stability analysis of systems based on delayed exponential matrix
Authors
Zijian Luo
JinRong Wang
Publication date
18-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2017
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-016-1039-2

Other articles of this Issue 1-2/2017

Journal of Applied Mathematics and Computing 1-2/2017 Go to the issue

Premium Partner