Skip to main content
Top

2019 | OriginalPaper | Chapter

7. FIR Digital Filters

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite impulse response (FIR) digital filter, as the name implies, has an impulse response sequence that is of finite duration as opposed to an IIR digital filter, which has an impulse response that is of infinite duration. Therefore, the Z-transform of the impulse response of an FIR digital filter in general can be written as

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Blackman RB (1965) Linear data smoothing and prediction in theory and practice. Addison-Wesley, ReadingMATH Blackman RB (1965) Linear data smoothing and prediction in theory and practice. Addison-Wesley, ReadingMATH
2.
go back to reference Boite R, Leich H (1981) A new procedure for the design of high-order minimum-phase FIR digital or CCD filters. Sig Process 3:101–108CrossRef Boite R, Leich H (1981) A new procedure for the design of high-order minimum-phase FIR digital or CCD filters. Sig Process 3:101–108CrossRef
3.
go back to reference Crochiere RE, Rabiner LR (1976) On the properties of frequency transformations for variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:684–686CrossRef Crochiere RE, Rabiner LR (1976) On the properties of frequency transformations for variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:684–686CrossRef
4.
go back to reference Dutta Roy SC, Kumar B (1989) On digital differentiators, Hilbert transformers, and half-band lowpass filters. IEEE Trans Edu 32:314–318CrossRef Dutta Roy SC, Kumar B (1989) On digital differentiators, Hilbert transformers, and half-band lowpass filters. IEEE Trans Edu 32:314–318CrossRef
5.
go back to reference Fatinopoulos I, Stathai T, Constantinides A(2001) A method for FIR filter design from joint amplitude and group delay characteristics. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, pp 621–625 Fatinopoulos I, Stathai T, Constantinides A(2001) A method for FIR filter design from joint amplitude and group delay characteristics. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, pp 621–625
6.
go back to reference Helms HD (1968) Nonrecursive digital filters: Design methods for achieving specifications on frequency response. IEEE Trans Audio Electroacoust AU-16:336–342CrossRef Helms HD (1968) Nonrecursive digital filters: Design methods for achieving specifications on frequency response. IEEE Trans Audio Electroacoust AU-16:336–342CrossRef
7.
go back to reference Herrmann O, Schussler HW (1970) Design of nonrecursive digital filters with minimum phase. Electron Lett 6:329–630CrossRef Herrmann O, Schussler HW (1970) Design of nonrecursive digital filters with minimum phase. Electron Lett 6:329–630CrossRef
8.
go back to reference Herrmann O, Rabiner LR, Chan DSK (1973) Practical design rules for optimum finite impulse response lowpass digital filters. Bell Syst Tech J 52:769–799CrossRef Herrmann O, Rabiner LR, Chan DSK (1973) Practical design rules for optimum finite impulse response lowpass digital filters. Bell Syst Tech J 52:769–799CrossRef
9.
go back to reference Jarske P, Neuvo Y, Mitra SK (1988) A simple approach to the design of FIR digital filters with variable characteristics. Sig Process 14:313–326MathSciNetCrossRef Jarske P, Neuvo Y, Mitra SK (1988) A simple approach to the design of FIR digital filters with variable characteristics. Sig Process 14:313–326MathSciNetCrossRef
10.
go back to reference Kaiser JF (1974) Nonrecursive digital filter design using the I0-sinh window function. In: Proceedings of IEEE international symposium on circuits and systems, San Francisco, CA, pp 20–23 Kaiser JF (1974) Nonrecursive digital filter design using the I0-sinh window function. In: Proceedings of IEEE international symposium on circuits and systems, San Francisco, CA, pp 20–23
11.
go back to reference Kaiser JF, Hamming RW (1977) Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. IEEE Trans Acoust Speech Sig Process ASSP-25:415–422CrossRef Kaiser JF, Hamming RW (1977) Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. IEEE Trans Acoust Speech Sig Process ASSP-25:415–422CrossRef
12.
go back to reference McClellan JH, Parks TW (1973) A unified approach to the design of optimum FIR linear phase digital filters. IEEE Trans Circ Theory CT-20:697–701CrossRef McClellan JH, Parks TW (1973) A unified approach to the design of optimum FIR linear phase digital filters. IEEE Trans Circ Theory CT-20:697–701CrossRef
13.
go back to reference Mitra SK (2011) Digital signal processing: a computer-based approach, 4th edn. McGraw Hill, New York Mitra SK (2011) Digital signal processing: a computer-based approach, 4th edn. McGraw Hill, New York
14.
go back to reference Neuvo Y, Dong C-Y, Mitra SK (1984) Interpolated finite impulse response filters. IEEE Trans Acoust Speech Sig Process ASSP-32:563–570CrossRef Neuvo Y, Dong C-Y, Mitra SK (1984) Interpolated finite impulse response filters. IEEE Trans Acoust Speech Sig Process ASSP-32:563–570CrossRef
15.
go back to reference Oetken G, Parks TW, Schussler HW (1975) New results in the design of digital interpolators. IEEE Trans Acoust Speech Sig Process ASSP-23:301–309CrossRef Oetken G, Parks TW, Schussler HW (1975) New results in the design of digital interpolators. IEEE Trans Acoust Speech Sig Process ASSP-23:301–309CrossRef
16.
go back to reference Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice Hall, Englewood CliffsMATH Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice Hall, Englewood CliffsMATH
17.
go back to reference Oppenheim AV, Mecklenbrauker WFG, Mersereau RM (1976) Variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:199–203CrossRef Oppenheim AV, Mecklenbrauker WFG, Mersereau RM (1976) Variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:199–203CrossRef
18.
go back to reference Oppenheim AV, Schafer RW (1999) Discrete-time signal processing, 2nd edn. Prentice Hall, Englewood CliffsMATH Oppenheim AV, Schafer RW (1999) Discrete-time signal processing, 2nd edn. Prentice Hall, Englewood CliffsMATH
19.
go back to reference Parks TW, McClellan JH (1972) Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans Circ Theory CT-19:189–194CrossRef Parks TW, McClellan JH (1972) Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans Circ Theory CT-19:189–194CrossRef
20.
go back to reference Rabiner LR (1973) Approximate design relationships for low-pass FIR digital filters. IEEE Trans Audio Electroacoust AU-21:456–460CrossRef Rabiner LR (1973) Approximate design relationships for low-pass FIR digital filters. IEEE Trans Audio Electroacoust AU-21:456–460CrossRef
21.
go back to reference Rabiner LR, Crochiere RE (1975) A novel implementation for narrow-band FIR digital filters. IEEE Trans Acoust Speech Sig Process 23(5):457–464CrossRef Rabiner LR, Crochiere RE (1975) A novel implementation for narrow-band FIR digital filters. IEEE Trans Acoust Speech Sig Process 23(5):457–464CrossRef
22.
go back to reference Rabiner LR, Gold B, McGonegal CA (1970) An approach to the approximation problem for nonrecursive digital filters. IEEE Trans Audio Electroacoust AU-18:83–106CrossRef Rabiner LR, Gold B, McGonegal CA (1970) An approach to the approximation problem for nonrecursive digital filters. IEEE Trans Audio Electroacoust AU-18:83–106CrossRef
23.
go back to reference Rabiner LR, McClellan JH, Parks TW (1975) FIR digital filter design techniques using weighted Chebyshev approximation. Proc IEEE 63(4):595–610CrossRef Rabiner LR, McClellan JH, Parks TW (1975) FIR digital filter design techniques using weighted Chebyshev approximation. Proc IEEE 63(4):595–610CrossRef
24.
go back to reference Saramaki T, Neuvo Y, Mitra SK (1988) Design of computationally efficient interpolated FIR filters. IEEE Trans Circ Syst CAS-35:70–88CrossRef Saramaki T, Neuvo Y, Mitra SK (1988) Design of computationally efficient interpolated FIR filters. IEEE Trans Circ Syst CAS-35:70–88CrossRef
Metadata
Title
FIR Digital Filters
Author
K. S. Thyagarajan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-76029-2_7