Skip to main content
Top

2019 | OriginalPaper | Chapter

Fire Detection Using DCNN for Assisting Visually Impaired People in IoT Service Environment

Authors : Borasy Kong, Kuoysuong Lim, Jangwoo Kwon

Published in: Distributed Computing and Artificial Intelligence, 15th International Conference

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an emergency, such as fire in a building, visually impaired people are prone to danger more than non-impaired people, for they cannot be aware of it quickly. Current fire detection methods such as smoke detector is very slow and unreliable. But by using vision sensor instead, fire can be proven to be detected much faster as shown in our experiments. Previous studies have applied various image processing and machine learning techniques to detect fire, but they usually don’t generalize well because those techniques use hand-crafted features. With the recent advancements in the field of deep learning, this research can be conducted to help solve the problem by using deep learning-based object detector to detect fire. Such approach can learn features automatically, so they can usually generalize well to various scenes. We introduced two object detection models (R1 and R2) with slightly different model’s complexity. R1 can detect fire at 90% average precision and 85% recall at 33 FPS, while R2 has 90% average precision and 61% recall at 50 FPS. The reason why we introduced two models is because we want to have a benchmark comparison as no other research on fire detection with similar techniques exists. We also want to give two model choices when we wish to integrate the model into an IoT platform.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Darkflow: darknet implementation in Tensorflow. Github repository: https://​github.​com/​thtrieu/​darkflow.
 
6
R2 has to be trained longer as more of its layers are being re-initialized.
 
Literature
1.
go back to reference Milke, J.: The History of Smoke Detection: A Profile of How the Technology and Role of Smoke Detection Has Changed. SUPDET (2011) Milke, J.: The History of Smoke Detection: A Profile of How the Technology and Role of Smoke Detection Has Changed. SUPDET (2011)
2.
go back to reference Liu, Z., Kim, A.: Review of recent developments in fire detection technologies. J. Fire Protect. Eng. 13, 129–151 (2003)CrossRef Liu, Z., Kim, A.: Review of recent developments in fire detection technologies. J. Fire Protect. Eng. 13, 129–151 (2003)CrossRef
3.
go back to reference Litton, C.D.: The Two Faces of Smoke. Chapter 10, Mine Health and Safety Litton, C.D.: The Two Faces of Smoke. Chapter 10, Mine Health and Safety
4.
go back to reference Morgan, A.: Automatic fire detection friend or foe? Fire Eng. J. (1999) Morgan, A.: Automatic fire detection friend or foe? Fire Eng. J. (1999)
5.
go back to reference Morgan, A.: Automatic fire detection let there be light. Fire Eng. J. (1999) Morgan, A.: Automatic fire detection let there be light. Fire Eng. J. (1999)
6.
go back to reference Jacobson, E.: Finding Novel Fire Detection Technologies for the Offshore Industry, p. 26, March 2000 Jacobson, E.: Finding Novel Fire Detection Technologies for the Offshore Industry, p. 26, March 2000
7.
go back to reference Lloyd, D.: Video Smoke Detection (VSD-8), Fire Safety, January 2000 Lloyd, D.: Video Smoke Detection (VSD-8), Fire Safety, January 2000
8.
go back to reference Wieser, D., Brupbacher, T.: Smoke detection in tunnels using video images. In: 12th International Conference on Automatic Fire Detection, Gaithersburg, USA, March 2001 Wieser, D., Brupbacher, T.: Smoke detection in tunnels using video images. In: 12th International Conference on Automatic Fire Detection, Gaithersburg, USA, March 2001
9.
go back to reference Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S., Hipp, J.D., Peng, L., Stumpe, M.C.: Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv preprint arXiv:1703.02442 Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S., Hipp, J.D., Peng, L., Stumpe, M.C.: Detecting Cancer Metastases on Gigapixel Pathology Images. arXiv preprint arXiv:​1703.​02442
10.
go back to reference Frizzi, S., Kaabi, R., Bouchouicha, M., Ginoux, J.M., Moreau, E., Fnaiech, F.: Convolutional neural network for video fire and smoke detection. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 23–26 October 2016, Florence, Italy (2016) Frizzi, S., Kaabi, R., Bouchouicha, M., Ginoux, J.M., Moreau, E., Fnaiech, F.: Convolutional neural network for video fire and smoke detection. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 23–26 October 2016, Florence, Italy (2016)
11.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
12.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv preprint arXiv:1506.01497 Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv preprint arXiv:​1506.​01497
13.
go back to reference Kong, B., Won, I., Woo, J.: Fire detection using deep convolutional neural networks for assisting people with visual impairments in an emergency situation. J. Rehabil. Res. 21, 129–146 (2017) Kong, B., Won, I., Woo, J.: Fire detection using deep convolutional neural networks for assisting people with visual impairments in an emergency situation. J. Rehabil. Res. 21, 129–146 (2017)
15.
go back to reference Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Conference on Computer Vision and Pattern Recognition 2017. (Accepted) Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Conference on Computer Vision and Pattern Recognition 2017. (Accepted)
Metadata
Title
Fire Detection Using DCNN for Assisting Visually Impaired People in IoT Service Environment
Authors
Borasy Kong
Kuoysuong Lim
Jangwoo Kwon
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-94649-8_2

Premium Partner