Skip to main content
Top

2018 | OriginalPaper | Chapter

3. First-Order Macroscopic Traffic Models

Authors : Antonella Ferrara, Simona Sacone, Silvia Siri

Published in: Freeway Traffic Modelling and Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Macroscopic traffic models describe the traffic behaviour at a high level of aggregation, i.e. the traffic dynamics is expressed through aggregate variables, such as traffic density, mean speed and flow. Macroscopic models rely on the analogy between the flow of vehicles and the flow of fluids or gases and are based on a limited number of equations that are relatively easy to handle. This chapter is devoted to describe a very relevant class of macroscopic models, i.e. first-order traffic flow models, which capture the dynamics of only one aggregate variable, namely, the traffic density. A very important first-order macroscopic model is the Lighthill–Whitham–Richards model, developed in the 50s, but still of interest nowadays both for theoretical analysis and practical applications. It is a continuous model, which describes the dynamics of the macroscopic variables through partial differential equations. The most famous discretised version of the Lighthill–Whitham–Richards model is the so-called Cell Transmission Model, developed in the 90s and very widespread in the communities of mathematicians and traffic engineers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Piccoli B, Tosin A (2009) Vehicular traffic: a review of continuum mathematical models. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 9727–9749CrossRef Piccoli B, Tosin A (2009) Vehicular traffic: a review of continuum mathematical models. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 9727–9749CrossRef
2.
go back to reference Greenshields BD, Bibbins JR, Channing WS, Miller HH (1935) A study of traffic capacity. In: Highway research board proceedings, vol 14, pp 448–477 Greenshields BD, Bibbins JR, Channing WS, Miller HH (1935) A study of traffic capacity. In: Highway research board proceedings, vol 14, pp 448–477
3.
go back to reference Papageorgiou M, Blosseville J-M, Hadj-Salem H (1989) Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris. Transp Res Part B 23:29–47CrossRef Papageorgiou M, Blosseville J-M, Hadj-Salem H (1989) Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris. Transp Res Part B 23:29–47CrossRef
4.
go back to reference Lighthill MJ, Whitham GB (1955) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc A 229:317–345MathSciNetCrossRef Lighthill MJ, Whitham GB (1955) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc A 229:317–345MathSciNetCrossRef
6.
go back to reference Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM, PhiladelphiaCrossRef Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM, PhiladelphiaCrossRef
7.
go back to reference Leveque RJ (1992) Numerical methods for conservation laws. Birkhäuser Verlag, BaselCrossRef Leveque RJ (1992) Numerical methods for conservation laws. Birkhäuser Verlag, BaselCrossRef
8.
go back to reference Evans L (1998) Partial differential equations. American Mathematical Society, ProvidenceMATH Evans L (1998) Partial differential equations. American Mathematical Society, ProvidenceMATH
9.
go back to reference Serre D (1996) Systems of conservation laws. Cambridge University Press, CambridgeMATH Serre D (1996) Systems of conservation laws. Cambridge University Press, CambridgeMATH
10.
go back to reference Bressan A (2000) Hyperbolic systems of conservation laws. Oxford University Press, OxfordMATH Bressan A (2000) Hyperbolic systems of conservation laws. Oxford University Press, OxfordMATH
11.
go back to reference Garavello M, Piccoli B (2016) Traffic flow on networks. American Institute of Mathematical Sciences Garavello M, Piccoli B (2016) Traffic flow on networks. American Institute of Mathematical Sciences
12.
go back to reference Garavello M, Han K, Piccoli B (2016) Models for vehicular traffic on networks. American Institute of Mathematical Sciences Garavello M, Han K, Piccoli B (2016) Models for vehicular traffic on networks. American Institute of Mathematical Sciences
13.
go back to reference Papageorgiou M (1998) Some remarks on macroscopic traffic flow modelling. Transp Res Part A 32:323–329 Papageorgiou M (1998) Some remarks on macroscopic traffic flow modelling. Transp Res Part A 32:323–329
15.
go back to reference Glimm J (1965) Solutions in the large for nonlinear hyperbolic systems of equations. Commun Pure Appl Math 18:697–715MathSciNetCrossRef Glimm J (1965) Solutions in the large for nonlinear hyperbolic systems of equations. Commun Pure Appl Math 18:697–715MathSciNetCrossRef
16.
go back to reference Kruzkov S (1970) First order quasilinear equations in several independent variables. Math USSR-Sbornik 10:217–243CrossRef Kruzkov S (1970) First order quasilinear equations in several independent variables. Math USSR-Sbornik 10:217–243CrossRef
17.
go back to reference DiPerna RJ (1976) Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J Differ Equ 20:187–212MathSciNetCrossRef DiPerna RJ (1976) Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J Differ Equ 20:187–212MathSciNetCrossRef
18.
go back to reference Bardos C, Leroux A, Nedelec J (1979) First order quasilinear equations with boundary conditions. Commun Part Differ Equ 4:1017–1034MathSciNetCrossRef Bardos C, Leroux A, Nedelec J (1979) First order quasilinear equations with boundary conditions. Commun Part Differ Equ 4:1017–1034MathSciNetCrossRef
19.
go back to reference Lebacque J (1996) The Godunov scheme and what it means for first order traffic flow models. In: Proceedings of the 13th international symposium on transportation and traffic theory, pp 647–677 Lebacque J (1996) The Godunov scheme and what it means for first order traffic flow models. In: Proceedings of the 13th international symposium on transportation and traffic theory, pp 647–677
20.
go back to reference Li T (2003) Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow. J Differ Equ 190:131–149MathSciNetCrossRef Li T (2003) Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow. J Differ Equ 190:131–149MathSciNetCrossRef
21.
22.
go back to reference Dubois F, Le Floch P (1988) Boundary conditions for nonlinear hyperbolic systems of conservations laws. J Differ Equ 71:93–122MathSciNetCrossRef Dubois F, Le Floch P (1988) Boundary conditions for nonlinear hyperbolic systems of conservations laws. J Differ Equ 71:93–122MathSciNetCrossRef
23.
go back to reference Le Floch P (1988) Explicit formula for scalar non-linear conservation laws with boundary condition. Math Methods Appl Sci 10:265–287MathSciNetCrossRef Le Floch P (1988) Explicit formula for scalar non-linear conservation laws with boundary condition. Math Methods Appl Sci 10:265–287MathSciNetCrossRef
24.
go back to reference Strub IS, Bayen AM (2006) Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int J Robust Nonlinear Control 16:733–748MathSciNetCrossRef Strub IS, Bayen AM (2006) Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int J Robust Nonlinear Control 16:733–748MathSciNetCrossRef
25.
go back to reference Colombo RM, Goatin P, Rosini MD (2011) On the modelling and management of traffic. ESAIM Math Model Numer Anal 45:853–872MathSciNetCrossRef Colombo RM, Goatin P, Rosini MD (2011) On the modelling and management of traffic. ESAIM Math Model Numer Anal 45:853–872MathSciNetCrossRef
26.
go back to reference Bagnerini P, Colombo RM, Corli A (2006) On the role of source terms in continuum traffic flow models. Math Comput Model 44:917–930MathSciNetCrossRef Bagnerini P, Colombo RM, Corli A (2006) On the role of source terms in continuum traffic flow models. Math Comput Model 44:917–930MathSciNetCrossRef
27.
go back to reference Jin W-L, Zhang HM (2003) The inhomogeneous kinematic wave traffic flow model as a resonant nonlinear system. Transp Sci 37:294–311CrossRef Jin W-L, Zhang HM (2003) The inhomogeneous kinematic wave traffic flow model as a resonant nonlinear system. Transp Sci 37:294–311CrossRef
28.
go back to reference Li J, Zhang HM (2013) Modeling space-time inhomogeneities with the kinematic wave theory. Transp Res Part B 54:113–125CrossRef Li J, Zhang HM (2013) Modeling space-time inhomogeneities with the kinematic wave theory. Transp Res Part B 54:113–125CrossRef
29.
go back to reference Claudel CG, Bayen AM (2010) Lax-Hopf based incorporation of internal boundary conditions into Hamilton–Jacobi equation, part I: theory. IEEE Trans Autom Control 55:1142–1157MathSciNetCrossRef Claudel CG, Bayen AM (2010) Lax-Hopf based incorporation of internal boundary conditions into Hamilton–Jacobi equation, part I: theory. IEEE Trans Autom Control 55:1142–1157MathSciNetCrossRef
30.
go back to reference Claudel CG, Bayen AM (2010) Lax-Hopf based incorporation of internal boundary conditions into Hamilton–Jacobi equation, part II: computational methods. IEEE Trans Autom Control 55:1158–1174MathSciNetCrossRef Claudel CG, Bayen AM (2010) Lax-Hopf based incorporation of internal boundary conditions into Hamilton–Jacobi equation, part II: computational methods. IEEE Trans Autom Control 55:1158–1174MathSciNetCrossRef
31.
go back to reference Holden H, Risebro NH (1995) A mathematical model of traffic flow on a network of unidirectional roads. SIAM J Math Anal 26:999–1017MathSciNetCrossRef Holden H, Risebro NH (1995) A mathematical model of traffic flow on a network of unidirectional roads. SIAM J Math Anal 26:999–1017MathSciNetCrossRef
32.
33.
go back to reference Bretti G, Natalini R, Piccoli B (2006) Numerical approximations of a traffic flow model on networks. Netw Heterog Media 1:57–84MathSciNetCrossRef Bretti G, Natalini R, Piccoli B (2006) Numerical approximations of a traffic flow model on networks. Netw Heterog Media 1:57–84MathSciNetCrossRef
34.
go back to reference Helbing D, Lämmer S, Lebacque J-P (2005) Self-organized control of irregular or perturbed network traffic. In: Deissenberg C, Hartl RF (eds) Opt Control Dyn Games. Springer, Dortrecht, pp 239–274CrossRef Helbing D, Lämmer S, Lebacque J-P (2005) Self-organized control of irregular or perturbed network traffic. In: Deissenberg C, Hartl RF (eds) Opt Control Dyn Games. Springer, Dortrecht, pp 239–274CrossRef
36.
go back to reference Delle Monache ML, Reilly J, Samaranayake S, Krichene W, Goatin P, Bayen AM (2014) A PDE-ODE model for a junction with ramp buffer. SIAM J Appl Math 74:22–39MathSciNetCrossRef Delle Monache ML, Reilly J, Samaranayake S, Krichene W, Goatin P, Bayen AM (2014) A PDE-ODE model for a junction with ramp buffer. SIAM J Appl Math 74:22–39MathSciNetCrossRef
37.
go back to reference Herty M, Lebacque J-P, Moutari S (2009) A novel model for intersections of vehicular traffic flow. Netw Heterog Media 4:813–826MathSciNetCrossRef Herty M, Lebacque J-P, Moutari S (2009) A novel model for intersections of vehicular traffic flow. Netw Heterog Media 4:813–826MathSciNetCrossRef
38.
go back to reference Garavello M, Goatin P (2012) The Cauchy problem at a node with buffer, discrete and continuous dynamical systems, Series A. American Institute of Mathematical Sciences Garavello M, Goatin P (2012) The Cauchy problem at a node with buffer, discrete and continuous dynamical systems, Series A. American Institute of Mathematical Sciences
39.
go back to reference Garavello M, Piccoli B (2013) A multibuffer model for LWR road networks. In: Ukkusuri S, Ozbay K (eds) Advances in dynamic network modeling in complex transportation systems. Springer, New York, pp 143–161MATH Garavello M, Piccoli B (2013) A multibuffer model for LWR road networks. In: Ukkusuri S, Ozbay K (eds) Advances in dynamic network modeling in complex transportation systems. Springer, New York, pp 143–161MATH
40.
go back to reference Leveque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge Leveque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge
41.
go back to reference Caligaris C, Sacone S, Siri S (2011) On an implicit and stable resolution scheme for the Payne–Whitham model. Math Comput Model 54:378–387MathSciNetCrossRef Caligaris C, Sacone S, Siri S (2011) On an implicit and stable resolution scheme for the Payne–Whitham model. Math Comput Model 54:378–387MathSciNetCrossRef
42.
go back to reference Trefethen LN (1996) Finite difference and spectral methods for ordinary and partial differential equations. Cornell University Trefethen LN (1996) Finite difference and spectral methods for ordinary and partial differential equations. Cornell University
43.
go back to reference Daganzo CF (1993) The cell transmission model part I: a simple dynamic representation of highway traffic. University of California, Berkeley Daganzo CF (1993) The cell transmission model part I: a simple dynamic representation of highway traffic. University of California, Berkeley
44.
go back to reference Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B 28:269–287CrossRef Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B 28:269–287CrossRef
45.
go back to reference Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res Part B 29:79–93CrossRef Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res Part B 29:79–93CrossRef
46.
go back to reference Daganzo CF (1995) A finite difference approximation of the kinematic wave model of traffic flow. Transp Res Part B 29:261–276CrossRef Daganzo CF (1995) A finite difference approximation of the kinematic wave model of traffic flow. Transp Res Part B 29:261–276CrossRef
47.
go back to reference Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 47:271–306MathSciNetMATH Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 47:271–306MathSciNetMATH
48.
go back to reference Yperman I, Logghe S, Immers B (2005) The link transmission model: an efficient implementation of the kinematic wave theory in traffic networks. Advanced OR and AI methods in transportation, pp 122–127 Yperman I, Logghe S, Immers B (2005) The link transmission model: an efficient implementation of the kinematic wave theory in traffic networks. Advanced OR and AI methods in transportation, pp 122–127
49.
go back to reference Newell GF (1993) A simplified theory of kinematic waves in highway traffic. Transp Res Part B 27:281–313CrossRef Newell GF (1993) A simplified theory of kinematic waves in highway traffic. Transp Res Part B 27:281–313CrossRef
50.
go back to reference Himpe W, Corthout R, Tampère MJC (2016) An efficient iterative link transmission model. Transp Res Part B 92:170–190CrossRef Himpe W, Corthout R, Tampère MJC (2016) An efficient iterative link transmission model. Transp Res Part B 92:170–190CrossRef
51.
go back to reference Ferrara A, Sacone S, Siri S (2015) Event-triggered model predictive schemes for freeway traffic control. Transp Res Part C 58:554–567CrossRef Ferrara A, Sacone S, Siri S (2015) Event-triggered model predictive schemes for freeway traffic control. Transp Res Part C 58:554–567CrossRef
52.
go back to reference Gomes G, Horowitz R (2006) Optimal freeway ramp metering using the asymmetric cell transmission model. Transp Res Part C 14:244–262CrossRef Gomes G, Horowitz R (2006) Optimal freeway ramp metering using the asymmetric cell transmission model. Transp Res Part C 14:244–262CrossRef
53.
go back to reference Gomes G, Horowitz R, Kurzhanskiy AA, Varaiya P, Kwon J (2008) Behavior of the cell transmission model and effectiveness of ramp metering. Transp Res Part C 16:485–513CrossRef Gomes G, Horowitz R, Kurzhanskiy AA, Varaiya P, Kwon J (2008) Behavior of the cell transmission model and effectiveness of ramp metering. Transp Res Part C 16:485–513CrossRef
54.
go back to reference Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica 35:407–427MathSciNetCrossRef Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica 35:407–427MathSciNetCrossRef
55.
go back to reference Ferrara A, Nai Oleari A, Sacone S, Siri S (2015) Freeways as systems of systems: a distributed model predictive control scheme. IEEE Syst J 9:312–323CrossRef Ferrara A, Nai Oleari A, Sacone S, Siri S (2015) Freeways as systems of systems: a distributed model predictive control scheme. IEEE Syst J 9:312–323CrossRef
56.
go back to reference Lebacque J (1852) Two-phase bounded-acceleration traffic flow model: analytical solutions and applications. Transp Res Rec 2003:220–230 Lebacque J (1852) Two-phase bounded-acceleration traffic flow model: analytical solutions and applications. Transp Res Rec 2003:220–230
57.
go back to reference Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res Part B 40:251–264CrossRef Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res Part B 40:251–264CrossRef
58.
go back to reference Leclercq L, Laval JA, Chiabaut N (2011) Capacity drops at merges: an endogenous model. Procedia Soc Behav Sci 17:12–26CrossRef Leclercq L, Laval JA, Chiabaut N (2011) Capacity drops at merges: an endogenous model. Procedia Soc Behav Sci 17:12–26CrossRef
59.
go back to reference Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res Part C 30:161–177CrossRef Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res Part C 30:161–177CrossRef
60.
go back to reference Roncoli C, Papageorgiou M, Papamichail I (2015) Traffic flow optimisation in presence of vehicle automation and communication systems - part I: a first-order multi-lane model for motorway traffic. Transp Res Part C 57:241–259CrossRef Roncoli C, Papageorgiou M, Papamichail I (2015) Traffic flow optimisation in presence of vehicle automation and communication systems - part I: a first-order multi-lane model for motorway traffic. Transp Res Part C 57:241–259CrossRef
61.
go back to reference Roncoli C, Papageorgiou M, Papamichail I (2014) Optimal control for multi-lane motorways in presence of vehicle automation and communication systems. In: Proceedings of the 19th IFAC world congress, pp 4178–4183CrossRef Roncoli C, Papageorgiou M, Papamichail I (2014) Optimal control for multi-lane motorways in presence of vehicle automation and communication systems. In: Proceedings of the 19th IFAC world congress, pp 4178–4183CrossRef
62.
go back to reference Han Y, Yuan Y, Hegyi A, Hoogendoorn S (2016) New extended discrete first-order model to reproduce propagation of jam waves. Transp Res Rec 2560:108–118CrossRef Han Y, Yuan Y, Hegyi A, Hoogendoorn S (2016) New extended discrete first-order model to reproduce propagation of jam waves. Transp Res Rec 2560:108–118CrossRef
63.
go back to reference Han Y, Hegyi A, Yuan Y, Hoogendoorn S, Papageorgiou M, Roncoli C (2017) Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transp Res Part C 77:405–420 Han Y, Hegyi A, Yuan Y, Hoogendoorn S, Papageorgiou M, Roncoli C (2017) Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transp Res Part C 77:405–420
64.
go back to reference Han Y, Hegyi A, Yuan Y, Hoogendoorn S (2017) Validation of an extended discrete first-order model with variable speed limits. Transp Res Part C 83:1–17CrossRef Han Y, Hegyi A, Yuan Y, Hoogendoorn S (2017) Validation of an extended discrete first-order model with variable speed limits. Transp Res Part C 83:1–17CrossRef
65.
go back to reference Alecsandru C, Quddus A, Huang KC, Rouhieh B, Khan AR, Zeng Q (2011) An assessment of the cell-transmission traffic flow paradigm: development and applications. Transportation Research Board Alecsandru C, Quddus A, Huang KC, Rouhieh B, Khan AR, Zeng Q (2011) An assessment of the cell-transmission traffic flow paradigm: development and applications. Transportation Research Board
66.
go back to reference Muralidharan A, Dervisoglu G, Horowitz R (2009) Freeway traffic flow simulation using the link node cell transmission model. In: Proceedings of the American control conference, pp 2916–2921 Muralidharan A, Dervisoglu G, Horowitz R (2009) Freeway traffic flow simulation using the link node cell transmission model. In: Proceedings of the American control conference, pp 2916–2921
67.
go back to reference Muralidharan A, Horowitz R (2012) Optimal control of freeway networks based on the link node cell transmission model. In: Proceedings of the American control conference, pp 5769–5774 Muralidharan A, Horowitz R (2012) Optimal control of freeway networks based on the link node cell transmission model. In: Proceedings of the American control conference, pp 5769–5774
68.
go back to reference Daganzo CF (1999) The lagged cell-transmission model. In: Proceedings of international symposium on transportation and traffic theory, pp 81–104 Daganzo CF (1999) The lagged cell-transmission model. In: Proceedings of international symposium on transportation and traffic theory, pp 81–104
69.
go back to reference Szeto WY (2008) Enhanced lagged cell-transmission model for dynamic traffic assignment. Transp Res Rec 76–85CrossRef Szeto WY (2008) Enhanced lagged cell-transmission model for dynamic traffic assignment. Transp Res Rec 76–85CrossRef
70.
go back to reference Canudas-de-Wit C, Ferrara A (2016) A variable-length cell road traffic model: application to ring road speed limit optimization. In: Proceedings of the IEEE 55th conference on decision and control, pp 6745–6752 Canudas-de-Wit C, Ferrara A (2016) A variable-length cell road traffic model: application to ring road speed limit optimization. In: Proceedings of the IEEE 55th conference on decision and control, pp 6745–6752
71.
go back to reference Ferrara A, Sacone S, Siri S, Vivas C, Rubio FR (2016) Switched observer-based ramp metering controllers for freeway systems. In: Proceedings of the 55th IEEE conference on decision and control, pp 6777–6782 Ferrara A, Sacone S, Siri S, Vivas C, Rubio FR (2016) Switched observer-based ramp metering controllers for freeway systems. In: Proceedings of the 55th IEEE conference on decision and control, pp 6777–6782
72.
go back to reference Ferrara A, Sacone S, Siri S (2015) A switched ramp-metering controller for freeway traffic systems. In: Proceedings of the 5th IFAC conference on analysis and design of hybrid systems, pp 105–110 Ferrara A, Sacone S, Siri S (2015) A switched ramp-metering controller for freeway traffic systems. In: Proceedings of the 5th IFAC conference on analysis and design of hybrid systems, pp 105–110
73.
go back to reference Mun̈oz L, Sun X, Horowitz R, Alvarez L (2003) Traffic density estimation with the cell transmission model. In: Proceedings of the American control conference, pp 3750–3755 Mun̈oz L, Sun X, Horowitz R, Alvarez L (2003) Traffic density estimation with the cell transmission model. In: Proceedings of the American control conference, pp 3750–3755
74.
go back to reference Morbidi F, Leon Ojeda L, Canudas de Wit C, Bellicot I (2014) A new robust approach for highway traffic density estimation. In: Proceedings of the European control conference, pp 2575–2580 Morbidi F, Leon Ojeda L, Canudas de Wit C, Bellicot I (2014) A new robust approach for highway traffic density estimation. In: Proceedings of the European control conference, pp 2575–2580
75.
go back to reference Holland EN, Woods AW (1997) A continuum model for the dispersion of traffic on two-lane roads. Transp Res Part B 31:473–485CrossRef Holland EN, Woods AW (1997) A continuum model for the dispersion of traffic on two-lane roads. Transp Res Part B 31:473–485CrossRef
76.
go back to reference Daganzo CF (1997) A continuum theory of traffic dynamics for freeways with special lanes. Transp Res Part B 31:83–102CrossRef Daganzo CF (1997) A continuum theory of traffic dynamics for freeways with special lanes. Transp Res Part B 31:83–102CrossRef
77.
go back to reference Hoogendoorn SP, Bovy PHL (2000) Continuum modeling of multiclass traffic flow. Transp Res Part B 34:123–146CrossRef Hoogendoorn SP, Bovy PHL (2000) Continuum modeling of multiclass traffic flow. Transp Res Part B 34:123–146CrossRef
78.
go back to reference Hoogendoorn SP, Bovy PHL (2001) Platoon-based multiclass modeling of multilane traffic flow. Netw Spat Econ 1:137–166CrossRef Hoogendoorn SP, Bovy PHL (2001) Platoon-based multiclass modeling of multilane traffic flow. Netw Spat Econ 1:137–166CrossRef
79.
go back to reference Daganzo CF (2002) A behavioral theory of multi-lane traffic flow part I: long homogeneous freeway sections. Transp Res Part B 36:131–158CrossRef Daganzo CF (2002) A behavioral theory of multi-lane traffic flow part I: long homogeneous freeway sections. Transp Res Part B 36:131–158CrossRef
80.
go back to reference Daganzo CF (2002) A behavioral theory of multi-lane traffic flow, part II: merges and the onset of congestion. Transp Res Part B 36:159–169CrossRef Daganzo CF (2002) A behavioral theory of multi-lane traffic flow, part II: merges and the onset of congestion. Transp Res Part B 36:159–169CrossRef
81.
go back to reference Jin W-L (2012) A kinematic wave theory of multi-commodity network traffic flow. Transp Res Part B 46:1000–1022CrossRef Jin W-L (2012) A kinematic wave theory of multi-commodity network traffic flow. Transp Res Part B 46:1000–1022CrossRef
82.
go back to reference Jin W-L (2013) A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow. Transp Res Part B 57:361–377CrossRef Jin W-L (2013) A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow. Transp Res Part B 57:361–377CrossRef
83.
go back to reference Wong GCK, Wong SC (2002) A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers. Transp Res Part A 36:827–841 Wong GCK, Wong SC (2002) A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers. Transp Res Part A 36:827–841
84.
go back to reference Bagnerini P, Rascle M (2003) A multiclass homogenized hyperbolic model of traffic flow. SIAM J Math Anal 35:949–973MathSciNetCrossRef Bagnerini P, Rascle M (2003) A multiclass homogenized hyperbolic model of traffic flow. SIAM J Math Anal 35:949–973MathSciNetCrossRef
85.
86.
go back to reference Ngoduy D, Liu R (2007) Multiclass first-order simulation model to explain non-linear traffic phenomena. Phys A 385:667–682CrossRef Ngoduy D, Liu R (2007) Multiclass first-order simulation model to explain non-linear traffic phenomena. Phys A 385:667–682CrossRef
87.
go back to reference Logghe S, Immers LH (2008) Multi-class kinematic wave theory of traffic flow. Transp Res Part B 42:523–541CrossRef Logghe S, Immers LH (2008) Multi-class kinematic wave theory of traffic flow. Transp Res Part B 42:523–541CrossRef
88.
go back to reference Lebacque JP, Lesort JB, Giorgi F (1998) Introducing buses into first-order macroscopic traffic flow models. Transp Res Rec 1644:70–79CrossRef Lebacque JP, Lesort JB, Giorgi F (1998) Introducing buses into first-order macroscopic traffic flow models. Transp Res Rec 1644:70–79CrossRef
89.
go back to reference Leclercq L (2007) Hybrid approaches to the solutions of the “Lighthill–Whitham–Richards” model. Transp Res Part B 41:701–709CrossRef Leclercq L (2007) Hybrid approaches to the solutions of the “Lighthill–Whitham–Richards” model. Transp Res Part B 41:701–709CrossRef
90.
go back to reference Lattanzio C, Maurizi A, Piccoli B (2011) Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J Math Anal 43:50–67MathSciNetCrossRef Lattanzio C, Maurizi A, Piccoli B (2011) Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J Math Anal 43:50–67MathSciNetCrossRef
91.
go back to reference Delle Monache ML, Goatin P (2014) Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. J Differ Equ 257:4015–4029MathSciNetCrossRef Delle Monache ML, Goatin P (2014) Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. J Differ Equ 257:4015–4029MathSciNetCrossRef
92.
go back to reference Simoni MD, Claudel CG (2017) A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management. Transp Res Part B 104:238–255CrossRef Simoni MD, Claudel CG (2017) A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management. Transp Res Part B 104:238–255CrossRef
93.
go back to reference Nair R, Mahmassani HS, Miller-Hooks E (2011) A porous flow approach to modeling heterogeneous traffic in disordered systems. Transp Res Part B 45:13311–345CrossRef Nair R, Mahmassani HS, Miller-Hooks E (2011) A porous flow approach to modeling heterogeneous traffic in disordered systems. Transp Res Part B 45:13311–345CrossRef
94.
go back to reference van Lint JWC, Hoogendoorn SP, Schreuder M (2008) Fastlane: new multiclass first-order traffic flow model. Transp Res Rec 2088:177–187CrossRef van Lint JWC, Hoogendoorn SP, Schreuder M (2008) Fastlane: new multiclass first-order traffic flow model. Transp Res Rec 2088:177–187CrossRef
95.
go back to reference Schreiter T, van Lint H, Hoogendoorn S (2011) Multi-class ramp metering: concepts and initial results. In: Proceedings of the 14th international IEEE conference on intelligent transportation systems, pp 885–889 Schreiter T, van Lint H, Hoogendoorn S (2011) Multi-class ramp metering: concepts and initial results. In: Proceedings of the 14th international IEEE conference on intelligent transportation systems, pp 885–889
96.
go back to reference Special Report 209: highway capacity manual. (1994) 3rd edn. Transportation Research Board, Washington DC Special Report 209: highway capacity manual. (1994) 3rd edn. Transportation Research Board, Washington DC
97.
go back to reference Al-Kaisy AF, Hall FL, Reisman ES (2002) Developing passenger car equivalents for heavy vehicles on freeways during queue discharge flow. Transp Res Part A 36:725–742 Al-Kaisy AF, Hall FL, Reisman ES (2002) Developing passenger car equivalents for heavy vehicles on freeways during queue discharge flow. Transp Res Part A 36:725–742
98.
99.
go back to reference Tuerprasert K, Aswakul C (2010) Multiclass cell transmission model for heterogeneous mobility in general topology of road network. J Intell Transp Syst 14:68–82CrossRef Tuerprasert K, Aswakul C (2010) Multiclass cell transmission model for heterogeneous mobility in general topology of road network. J Intell Transp Syst 14:68–82CrossRef
100.
go back to reference Levin MW, Boyles SD (2016) A multiclass cell transmission model for shared human and autonomous vehicle roads. Transp Res Part C 62:103–116CrossRef Levin MW, Boyles SD (2016) A multiclass cell transmission model for shared human and autonomous vehicle roads. Transp Res Part C 62:103–116CrossRef
101.
go back to reference Qian Z, Li J, Li X, Zhang M, Wang H (2017) Modeling heterogeneous traffic flow: a pragmatic approach. Transp Res Part B 99:183–204CrossRef Qian Z, Li J, Li X, Zhang M, Wang H (2017) Modeling heterogeneous traffic flow: a pragmatic approach. Transp Res Part B 99:183–204CrossRef
102.
go back to reference Liu H, Wang J, Wijayaratna K, Dixit VV, Travis Waller S (2015) Integrating the bus vehicle class into the cell transmission model. IEEE Trans Intell Transp Syst 16:2620–2630CrossRef Liu H, Wang J, Wijayaratna K, Dixit VV, Travis Waller S (2015) Integrating the bus vehicle class into the cell transmission model. IEEE Trans Intell Transp Syst 16:2620–2630CrossRef
Metadata
Title
First-Order Macroscopic Traffic Models
Authors
Antonella Ferrara
Simona Sacone
Silvia Siri
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-75961-6_3