Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

10-09-2021 | THEORY OF METALS

First-Principles Study of Mechanical and Electronic Properties of η and η' Phases Present in 7xxx Alloys

Authors: Yunlong Ma, Ben Lin, Zhengbing Xiao, Yuanchun Huang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

The η' and η strengthening precipitates in Al–Zn–Mg alloys were investigated by the first principle calculations. Results of the heat of formation and cohesive energy indicates that the model of η′ with \(P{{\bar {6}}}\) and space group of No. 174 is the energy favored model. The structure, elastic constants and electronic properties of the energy favored η′ and η (MgZn2) were compared and discussed. The obtained negative heat of formation and cohesive energy indicates that both η′ and MgZn2 have good alloying ability and structural stability, while MgZn2 particles exhibit a higher structural stability compared to η′, for MgZn2 has a lower density of states (DOS) at the Fermi level, which was verified by the experiments that η′ is not as stable as MgZn2. In addition, the obtained elastic constants Cij of MgZn2 and η′ were calculated, from which were derived the elastic modulus such as bulk modulus (B), shear modulus (G), Poisson ration (ν), Young’s modulus (E), and anisotropy (A) of these two precipitates. It is suggested that MgZn2 is stronger than η' for the higher elastic constants but with a better isotropy. Finally, the electronic density of states of η' and MgZn2, together with their influences to the mechanical performance of Al–Zn–Mg alloys were furtherly discussed.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference L. Shengdan, L. Chengbo, H. Suqi, D. Yunlai, and Z. Xinming, “Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy,” J. Alloys Compd. 625, 34–43 (2015). L. Shengdan, L. Chengbo, H. Suqi, D. Yunlai, and Z. Xinming, “Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy,” J. Alloys Compd. 625, 34–43 (2015).
2.
go back to reference F. Xigang, J. Daming, M. Qingchang, and Z. Li, “The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization,” Mater. Lett. 60, 1475–1479 (2006). F. Xigang, J. Daming, M. Qingchang, and Z. Li, “The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization,” Mater. Lett. 60, 1475–1479 (2006).
3.
go back to reference Z. W. Du, Z. M. Sun, B. L. Shao, T. T. Zhou, and C. Q. Chen, “Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging,” Mater. Charact. 56, 121–128 (2006). Z. W. Du, Z. M. Sun, B. L. Shao, T. T. Zhou, and C. Q. Chen, “Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging,” Mater. Charact. 56, 121–128 (2006).
4.
go back to reference X. M. Li and M. J. Starink, “Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys,” Mater. Sci. Technol. 17, 1324–1328 (2001). X. M. Li and M. J. Starink, “Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys,” Mater. Sci. Technol. 17, 1324–1328 (2001).
5.
go back to reference L. Guofeng, Z. Xinming, L. Penghui, and Y. Jianghai, “Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050,” Trans. Nonferrous Met. Soc. China 20, 935–941 (2010). L. Guofeng, Z. Xinming, L. Penghui, and Y. Jianghai, “Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050,” Trans. Nonferrous Met. Soc. China 20, 935–941 (2010).
6.
go back to reference C. Songyi, C. Kanghua, P. Guosheng, J. Le, and D. Pengxuan, “Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy,” Mater. Des. 35, 93–98 (2012). C. Songyi, C. Kanghua, P. Guosheng, J. Le, and D. Pengxuan, “Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy,” Mater. Des. 35, 93–98 (2012).
7.
go back to reference C. Wolverton, “Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys,” Acta Mater. 49, 3129–3142 (2001). C. Wolverton, “Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys,” Acta Mater. 49, 3129–3142 (2001).
8.
go back to reference J. Gjønnes and C. J. Simensen, “An electron microscope investigation of the microstructure in an aluminium–zinc–magnesium alloy,” Acta Metall. 18, 881–890 (1970). J. Gjønnes and C. J. Simensen, “An electron microscope investigation of the microstructure in an aluminium–zinc–magnesium alloy,” Acta Metall. 18, 881–890 (1970).
9.
go back to reference J. H. Auld and S. M. Cousland, “On the structure of the M' phase in Al–Zn–Mg alloys,” J. Appl. Crystallogr. 18, 47–48 (1985). J. H. Auld and S. M. Cousland, “On the structure of the M' phase in Al–Zn–Mg alloys,” J. Appl. Crystallogr. 18, 47–48 (1985).
10.
go back to reference C. Régnier, J. Bouvaist, and J. P. Simon, “Etude cristallographique de la phase de transition M'' dans Al–8%Zn–1%Mg,” J. Appl. Crystallogr. 15, 590–593 (1982). C. Régnier, J. Bouvaist, and J. P. Simon, “Etude cristallographique de la phase de transition M'' dans Al–8%Zn–1%Mg,” J. Appl. Crystallogr. 15, 590–593 (1982).
11.
go back to reference C. Ravi and C. Wolverton, “First–principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates,” Acta Mater. 52, 4213–4227 (2004). C. Ravi and C. Wolverton, “First–principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates,” Acta Mater. 52, 4213–4227 (2004).
12.
go back to reference X. Z. Li, V. Hansen, J. GjOnnes, and L. R. Wallenberg, “HREM study and structure modeling of the η' phase, the hardening precipitates in commercial Al–Zn–Mg alloys,” Acta Mater. 47, 2651–2659 (1999). X. Z. Li, V. Hansen, J. GjOnnes, and L. R. Wallenberg, “HREM study and structure modeling of the η' phase, the hardening precipitates in commercial Al–Zn–Mg alloys,” Acta Mater. 47, 2651–2659 (1999).
13.
go back to reference A. Kverneland, V. Hansen, R. Vincent, K. Gjønnes, and J. Gjønnes, “Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example,” Ultramicroscopy 106, 492–502 (2006). A. Kverneland, V. Hansen, R. Vincent, K. Gjønnes, and J. Gjønnes, “Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example,” Ultramicroscopy 106, 492–502 (2006).
14.
go back to reference J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloy,” Mater. Charact. 99, 277–286 (2015). J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloy,” Mater. Charact. 99, 277–286 (2015).
15.
go back to reference J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys,” Mater. Charact. 99, 142–149 (2015). J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys,” Mater. Charact. 99, 142–149 (2015).
16.
go back to reference J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants,” J. Alloys Compd. 610, 623–629 (2014). J. Z. Liu, J. H. Chen, D. W. Yuan, C. L. Wu, J. Zhu, and Z. Y. Cheng, “Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants,” J. Alloys Compd. 610, 623–629 (2014).
17.
go back to reference L. Helge Bovik, T. Gunnar, N. Solvi, and P. Philip, “Average crystal structure(s) of the embedded meta stable η'-phase in the Al–Mg–Zn system,” Philos. Mag. 94, 1719–1743 (2014). L. Helge Bovik, T. Gunnar, N. Solvi, and P. Philip, “Average crystal structure(s) of the embedded meta stable η'-phase in the Al–Mg–Zn system,” Philos. Mag. 94, 1719–1743 (2014).
18.
go back to reference A. L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, and J. D. Barceinas-Sanchez Oscar, “Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075–T651 by TEM and AFM,” Mater. Charact. 87, 116–124 (2014). A. L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, and J. D. Barceinas-Sanchez Oscar, “Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075–T651 by TEM and AFM,” Mater. Charact. 87, 116–124 (2014).
19.
go back to reference M. CalinD, L. Williams, A. SigmundJ, and F. Jesper, “Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF–STEM and first-principles calculations: relation to η-MgZn 2,” J. Mater. Sci. 48, 3638–3651 (2013). M. CalinD, L. Williams, A. SigmundJ, and F. Jesper, “Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF–STEM and first-principles calculations: relation to η-MgZn 2,” J. Mater. Sci. 48, 3638–3651 (2013).
20.
go back to reference A. Kverneland, V. Hansen, G. Thorkildsen, H. B. Larsen, P. Pattison, X. Z. Li, and J. Gjønnes, “Transformations and structures in the Al–Zn–Mg alloy system: A diffraction study using synchrotron radiation and electron precession,” Mater. Sci. Eng., A 528, 880–887 (2011). A. Kverneland, V. Hansen, G. Thorkildsen, H. B. Larsen, P. Pattison, X. Z. Li, and J. Gjønnes, “Transformations and structures in the Al–Zn–Mg alloy system: A diffraction study using synchrotron radiation and electron precession,” Mater. Sci. Eng., A 528, 880–887 (2011).
21.
go back to reference T. Seidenkranz and E. Hegenbarth, “Single–crystal elastic constants of MgZn 2 in the temperature range from 4.2 to 300 K,” Phys. Status Solidi A 33, 205–210 (1976). T. Seidenkranz and E. Hegenbarth, “Single–crystal elastic constants of MgZn 2 in the temperature range from 4.2 to 300 K,” Phys. Status Solidi A 33, 205–210 (1976).
22.
go back to reference W. Mengmeng, W. Li, T. Biyu, P. Liming, and D. Wenjiang, “First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy,” J. Alloys Compd. 506, 412–417 (2010). W. Mengmeng, W. Li, T. Biyu, P. Liming, and D. Wenjiang, “First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy,” J. Alloys Compd. 506, 412–417 (2010).
23.
go back to reference C. Qiang, H. Zhiwei, Z. Zude, and S. Dayu, “First principles study on elastic properties, thermodynamics and electronic structural of AB2 type phases in magnesium alloy,” Solid State Commun. 162, 1–7 (2013). C. Qiang, H. Zhiwei, Z. Zude, and S. Dayu, “First principles study on elastic properties, thermodynamics and electronic structural of AB2 type phases in magnesium alloy,” Solid State Commun. 162, 1–7 (2013).
24.
go back to reference T. Bi-Yu, W. Na, Y. Wei-Yang, Z. Xiao-Qin, and D. Wen-Jiang, “Theoretical investigation of typical fcc precipitates in Mg-based alloys,” Acta Mater. 56, 3353–3357 (2008). T. Bi-Yu, W. Na, Y. Wei-Yang, Z. Xiao-Qin, and D. Wen-Jiang, “Theoretical investigation of typical fcc precipitates in Mg-based alloys,” Acta Mater. 56, 3353–3357 (2008).
25.
go back to reference D. Shin and C. Wolverton, “First-principles study of solute-vacancy binding in magnesium,” Acta Mater. 58, 531–540 (2010). D. Shin and C. Wolverton, “First-principles study of solute-vacancy binding in magnesium,” Acta Mater. 58, 531–540 (2010).
26.
go back to reference P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B 136, 864–847 (1964). P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B 136, 864–847 (1964).
27.
go back to reference D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B 41, 7892–7895 (1990). D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B 41, 7892–7895 (1990).
28.
go back to reference D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980). D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).
29.
go back to reference J. P. Perdew and A. Zunger, “Self-interaction correction to density–functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981). J. P. Perdew and A. Zunger, “Self-interaction correction to density–functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
30.
go back to reference J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
31.
go back to reference J. H. Westbrook, Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds, Ed. by R. L. Fleischer (Wiley, 2000). J. H. Westbrook, Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds, Ed. by R. L. Fleischer (Wiley, 2000).
32.
go back to reference O. Yifang, L. Fenglian, C. Hongmei, T. Xiaoma, D. Yong, and H. Yuehui, “The structural stability, elastic constants and electronic structure of Al–Sr intermetallics by first-principles calculations,” Phys. B 406, 3681–3686 (2011). O. Yifang, L. Fenglian, C. Hongmei, T. Xiaoma, D. Yong, and H. Yuehui, “The structural stability, elastic constants and electronic structure of Al–Sr intermetallics by first-principles calculations,” Phys. B 406, 3681–3686 (2011).
33.
go back to reference Y. Han and J. Jung, “Structure and stability of Al13I clusters,” J. Chem. Phys. 121, 8500–8502 (2004). Y. Han and J. Jung, “Structure and stability of Al13I clusters,” J. Chem. Phys. 121, 8500–8502 (2004).
34.
go back to reference N. A. Zarkevich, T. L. Tan, and D. D. Johnson, “First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures,” Phys. Rev. B 75, 104203 (2007). N. A. Zarkevich, T. L. Tan, and D. D. Johnson, “First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures,” Phys. Rev. B 75, 104203 (2007).
35.
go back to reference X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr–containing Al–Zn–Mg–Cu alloys,” J. Alloys Compd. 509, 471–476 (2011). X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr–containing Al–Zn–Mg–Cu alloys,” J. Alloys Compd. 509, 471–476 (2011).
36.
go back to reference Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B 76, 054115 (2007). Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B 76, 054115 (2007).
37.
go back to reference R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. Sect. A 65, 349–354 (1952). R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. Sect. A 65, 349–354 (1952).
38.
go back to reference S. F. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Philos. Mag. 45, 823–843 (1954). S. F. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Philos. Mag. 45, 823–843 (1954).
39.
go back to reference R. Hill, “On discontinuous plastic states, with special reference to localized necking in thin sheets,” J. Mech. Phys. Solids 1, 19–30 (1952). R. Hill, “On discontinuous plastic states, with special reference to localized necking in thin sheets,” J. Mech. Phys. Solids 1, 19–30 (1952).
40.
go back to reference M. Mattesini, R. Ahuja, and B. Johansson, “Cubic Hf3N4 and Zr3N4: A class of hard materials,” Phys. Rev. B 68, 184108 (2003). M. Mattesini, R. Ahuja, and B. Johansson, “Cubic Hf3N4 and Zr3N4: A class of hard materials,” Phys. Rev. B 68, 184108 (2003).
41.
go back to reference V. Tvergaard and J.W. Hutchinson, “Microcracking in ceramics induced by thermal expansion or elastic anisotropy,” J. Am. Ceram. Soc. 71, 157–166 (2005). V. Tvergaard and J.W. Hutchinson, “Microcracking in ceramics induced by thermal expansion or elastic anisotropy,” J. Am. Ceram. Soc. 71, 157–166 (2005).
42.
go back to reference W. Guo, J. Guo, J. Wang, M. Yang, H. Li, X. Wen, and J. Zhang, “Evolution of precipitate microstructure during stress aging of an Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng., A 634, 167–175 (2015). W. Guo, J. Guo, J. Wang, M. Yang, H. Li, X. Wen, and J. Zhang, “Evolution of precipitate microstructure during stress aging of an Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng., A 634, 167–175 (2015).
Metadata
Title
First-Principles Study of Mechanical and Electronic Properties of η and η' Phases Present in 7xxx Alloys
Authors
Yunlong Ma
Ben Lin
Zhengbing Xiao
Yuanchun Huang
Publication date
10-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20140112