Skip to main content
Top
Published in: Journal of Materials Science 18/2015

01-09-2015 | Original Paper

First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3

Authors: M. Pugaczowa-Michalska, J. Kaczkowski

Published in: Journal of Materials Science | Issue 18/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the effect of the light rare earth ions La, Ce, Pr, and Nd on electronic structure, structural properties, magnetic states, and ferroelectric properties of BiFeO3 using density functional theory within GGA + U method. The supercell of 40 atoms is considered for four phases: R3c, Pnma, Pn2 1 a, Pbam. We show that, among potential phases, the R3c-G structure of BiFeO3 where one Bi substituted by one of the studied rare-earth elements has the minimal total energy. We predict the values of spontaneous electric polarization in RE-doped BiFeO3 to be above 80 μC cm−2 and a non-zero values of the magnetic moments in RE-doped BiFeO3 for R3c-G phase of the studied systems. Upon introduction of a rare-earth ion to a Bi site, the total magnetic moments are 0 μB, 0.99, 1.99, and 2.98 μB f.u.−1 for La, Ce, Pr, and Nd substitution, respectively. The results of total energy calculations show that the Pn2 1 a and Pnma phases of the BiFeO3 with Ce or Pr substitution of Bi occur on the same energy scale. This close energy scale suggests a coexistence of these phases beyond T = 0 K or under other conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Catalan G, Scott JF (2009) Physics and application of bismuth ferrite. Adv Mater 21:2463–2485CrossRef Catalan G, Scott JF (2009) Physics and application of bismuth ferrite. Adv Mater 21:2463–2485CrossRef
2.
go back to reference Belik AA (2012) Polar and nonpolar phases of BiMO3: a review. J Solid State Chem 195:32–40CrossRef Belik AA (2012) Polar and nonpolar phases of BiMO3: a review. J Solid State Chem 195:32–40CrossRef
3.
go back to reference Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962CrossRef Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962CrossRef
4.
go back to reference Ishiwara H (2012) Impurity substitution effects in BiFeO3 thin films—From a viewpoint of FeRAM applications. Curr Appl Phys 12:603–611CrossRef Ishiwara H (2012) Impurity substitution effects in BiFeO3 thin films—From a viewpoint of FeRAM applications. Curr Appl Phys 12:603–611CrossRef
5.
go back to reference Hill NA (2000) Why are there so few ferromagnetic materials. J Phys Chem B 104:6694–6709CrossRef Hill NA (2000) Why are there so few ferromagnetic materials. J Phys Chem B 104:6694–6709CrossRef
6.
go back to reference Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Lui B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 299:1719–1722CrossRef Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Lui B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 299:1719–1722CrossRef
7.
go back to reference Béa H, Bibes M, Cherifi S, Nolthing F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthélémy A (2006) Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 89:242114-1–242114-3CrossRef Béa H, Bibes M, Cherifi S, Nolthing F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthélémy A (2006) Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 89:242114-1–242114-3CrossRef
8.
go back to reference Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C 13:1931–1940CrossRef Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C 13:1931–1940CrossRef
9.
go back to reference Smolenskii GA, Isupov V, Agranovskaya A, Krasnik N (1961) New ferroelectrics of complex composition IV. Sov Phys Solid State 2:2651–2654 Smolenskii GA, Isupov V, Agranovskaya A, Krasnik N (1961) New ferroelectrics of complex composition IV. Sov Phys Solid State 2:2651–2654
10.
go back to reference Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Soviet Phys Uspekhi 25:475–493CrossRef Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Soviet Phys Uspekhi 25:475–493CrossRef
11.
go back to reference Kumar MM, Srinath S, Kumar GS, Suryanarayana SV (1998) Spontaneous magnetic moment in BiFeO3–BaTiO3 solid solutions at low temperatures. J Magn Magn Mater 188:203–212CrossRef Kumar MM, Srinath S, Kumar GS, Suryanarayana SV (1998) Spontaneous magnetic moment in BiFeO3–BaTiO3 solid solutions at low temperatures. J Magn Magn Mater 188:203–212CrossRef
12.
go back to reference Popov YuF, Zvezdin AK, Vorobev GP, Kadomtseva AM, Murashev VA, Rakov DN (1993) Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3. JETP Lett 57:69–73 Popov YuF, Zvezdin AK, Vorobev GP, Kadomtseva AM, Murashev VA, Rakov DN (1993) Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3. JETP Lett 57:69–73
13.
go back to reference Zalesskii AV, Frolov AA, Khimich TA, Bush AA (2003) Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1-xLaxFeO3 system studied using 57Fe NMR. Phys Sol St 45:141 (FTT 45:135)CrossRef Zalesskii AV, Frolov AA, Khimich TA, Bush AA (2003) Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1-xLaxFeO3 system studied using 57Fe NMR. Phys Sol St 45:141 (FTT 45:135)CrossRef
14.
go back to reference Chen P, Günaydın-Şen Ö, Ren WJ, Qin Z, Brinzari TV, McGill S, Cheong S-W, Musfeldt JL (2012) Spin cycloid quenching in Nd3+ -substituted BiFeO3. Phys Rev B 86:014407-1–014407-6 Chen P, Günaydın-Şen Ö, Ren WJ, Qin Z, Brinzari TV, McGill S, Cheong S-W, Musfeldt JL (2012) Spin cycloid quenching in Nd3+ -substituted BiFeO3. Phys Rev B 86:014407-1–014407-6
15.
go back to reference Xiao R, Pelenovich VO, Fu D (2013) Spin cycloid destruction in Pr doped BiFeO3 films studied by conversion-electron Mossbauer spectroscopy. Appl Phys Lett 103:012901-1–012901-4 Xiao R, Pelenovich VO, Fu D (2013) Spin cycloid destruction in Pr doped BiFeO3 films studied by conversion-electron Mossbauer spectroscopy. Appl Phys Lett 103:012901-1–012901-4
17.
go back to reference Kan D, Palova L, Anbusathaih V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behaviour and electric-field-induced structural transition in rare earth substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRef Kan D, Palova L, Anbusathaih V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behaviour and electric-field-induced structural transition in rare earth substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRef
18.
go back to reference Kadomtseva AM, Popov YuF, Pyatakov AP, Vorob’ev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic crystals, think-layers and ceramics: enduring potential for a single phase, room-temparature magnetoelectric ‘holy grail’. Phase Transit 79:1019–1042CrossRef Kadomtseva AM, Popov YuF, Pyatakov AP, Vorob’ev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic crystals, think-layers and ceramics: enduring potential for a single phase, room-temparature magnetoelectric ‘holy grail’. Phase Transit 79:1019–1042CrossRef
19.
go back to reference Uniyal P, Yadav K (2009) Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J Phys 21:012205-1–012205-4 Uniyal P, Yadav K (2009) Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J Phys 21:012205-1–012205-4
20.
go back to reference Catalan G (2006) Magnetocapacitance without magnetic coupling. Appl Phys Lett 88:102902-1–102902-3CrossRef Catalan G (2006) Magnetocapacitance without magnetic coupling. Appl Phys Lett 88:102902-1–102902-3CrossRef
21.
go back to reference Gabbasova ZV, Kuzmin MD, Zvezdin AK, Dubenko IS, Murashov VA, Rakov DN, Krynetsky IB (1991) Bi 1–x R x FeO3 (R = rare earth): a family of novel magnetoelectric. Phys Lett A 158:491–498CrossRef Gabbasova ZV, Kuzmin MD, Zvezdin AK, Dubenko IS, Murashov VA, Rakov DN, Krynetsky IB (1991) Bi 1x R x FeO3 (R = rare earth): a family of novel magnetoelectric. Phys Lett A 158:491–498CrossRef
22.
go back to reference Quan Z, Liu W, Hu H, Xu S, Sebo B, Fang G, Li M, Zhao Z (2008) Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J Appl Phys 104:084106–1–084106–10CrossRef Quan Z, Liu W, Hu H, Xu S, Sebo B, Fang G, Li M, Zhao Z (2008) Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J Appl Phys 104:084106–1–084106–10CrossRef
23.
go back to reference Quan Z, Hu H, Xu S, Liu W, Fang G, Li M, Zhao Z (2008) Surface chemical bonding states and ferroelectricityof Ce-doped BiFeO3 thin films prepared by sol-gel process. J Sol–Gel Sci Technol 48:261–266CrossRef Quan Z, Hu H, Xu S, Liu W, Fang G, Li M, Zhao Z (2008) Surface chemical bonding states and ferroelectricityof Ce-doped BiFeO3 thin films prepared by sol-gel process. J Sol–Gel Sci Technol 48:261–266CrossRef
24.
go back to reference Wang X, Liu H, Yan B (2008) Enhanced ferroelectric properties of Ce–subsituted BiFeO3 thin films prepared by sol–gel process. J Sol–Gel Sci Technol 47:124–127CrossRef Wang X, Liu H, Yan B (2008) Enhanced ferroelectric properties of Ce–subsituted BiFeO3 thin films prepared by sol–gel process. J Sol–Gel Sci Technol 47:124–127CrossRef
26.
go back to reference Lee YH, Wu J-M, Lai C-H (2006) Influence of La doping in multiferroic properties of BiFeO 3 thin films. Appl Phys Lett 88:042903-1–042903-3 Lee YH, Wu J-M, Lai C-H (2006) Influence of La doping in multiferroic properties of BiFeO 3 thin films. Appl Phys Lett 88:042903-1–042903-3
27.
go back to reference Destro FB, Moura F, Foschini CR, Ranieri MG, Longo E, Simões AZ (2014) Electrical behavior of Bi0.95Nd0.05FeO3 thin films grown by the soft chemical method. Ceram Int 40:8715–8722CrossRef Destro FB, Moura F, Foschini CR, Ranieri MG, Longo E, Simões AZ (2014) Electrical behavior of Bi0.95Nd0.05FeO3 thin films grown by the soft chemical method. Ceram Int 40:8715–8722CrossRef
28.
go back to reference Huang F, Lu X, Lin W, Wu X, Kann Y, Zhu J (2006) Effect of Nd dopant on magnetic and electric properties of BiFeO 3 thin films prepared by metal organic deposition method. Appl Phys Lett 89:242914-1–242914-3 Huang F, Lu X, Lin W, Wu X, Kann Y, Zhu J (2006) Effect of Nd dopant on magnetic and electric properties of BiFeO 3 thin films prepared by metal organic deposition method. Appl Phys Lett 89:242914-1–242914-3
29.
go back to reference Yu B, Li M, Hu Z, Pei L, Guo D, Zhao X, Dong S (2008) Enhanced multiferroic properties of the high-valence Pr doped BiFeO 3 thin film. Appl Phys Lett 93:182909-1–182909-3 Yu B, Li M, Hu Z, Pei L, Guo D, Zhao X, Dong S (2008) Enhanced multiferroic properties of the high-valence Pr doped BiFeO 3 thin film. Appl Phys Lett 93:182909-1–182909-3
30.
go back to reference Rusakov DA, Abakumov AM, Yamaura K, Belik AA, van Tendeloo G, Takayama-Muromashi E (2011) Structural evolution of the BiFeO3-LaFeO3 system. Chem Mat 23:285–292CrossRef Rusakov DA, Abakumov AM, Yamaura K, Belik AA, van Tendeloo G, Takayama-Muromashi E (2011) Structural evolution of the BiFeO3-LaFeO3 system. Chem Mat 23:285–292CrossRef
31.
go back to reference Zhang ST, Pang LH, Zhang Y, Lu MH, Chen YF (2006) Preparation, structures, and multiferroic properties of single phase Bi1−x La x FeO 3 (x = 0–0.40) ceramics. J Appl Phys 100:114108-1–114108-6 Zhang ST, Pang LH, Zhang Y, Lu MH, Chen YF (2006) Preparation, structures, and multiferroic properties of single phase Bi1−x La x FeO 3 (x = 0–0.40) ceramics. J Appl Phys 100:114108-1–114108-6
32.
go back to reference Chen JR, Yang WL, Li J-B, Rao GH (2008) X-ray diffraction analysis and specific heat capacity of (Bi1-x La x )FeO3 perovskites. J Alloy Compd 459:66–70CrossRef Chen JR, Yang WL, Li J-B, Rao GH (2008) X-ray diffraction analysis and specific heat capacity of (Bi1-x La x )FeO3 perovskites. J Alloy Compd 459:66–70CrossRef
33.
go back to reference González-Vázquez OE, Wojdeł JC, Diéguez O, Íñiguez J (2012) First-principles investigation of the structural phases and enhanced response properties of the BiFeO3–LaFeO3 multiferroic solid solution. Phys Rev B 85:064119-1–064119-10CrossRef González-Vázquez OE, Wojdeł JC, Diéguez O, Íñiguez J (2012) First-principles investigation of the structural phases and enhanced response properties of the BiFeO3–LaFeO3 multiferroic solid solution. Phys Rev B 85:064119-1–064119-10CrossRef
34.
go back to reference Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS (2010) Structural, dielectric, and magnetic propertiesof Pr substituted Bi1–xPrxFeO3 (0 ≤ x ≤ 0.15) multiferroic compounds. J Alloy Compd 501:L29–L32CrossRef Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS (2010) Structural, dielectric, and magnetic propertiesof Pr substituted Bi1–xPrxFeO3 (0 ≤ x ≤ 0.15) multiferroic compounds. J Alloy Compd 501:L29–L32CrossRef
36.
go back to reference Xu B, Wang D, Íñiguez J, Bellaiche L (2015) Finite–temperature properties of rare-earth substituted BiFeO3 multiferroc solid solutions. Adv Funct Mater 25:552–558CrossRef Xu B, Wang D, Íñiguez J, Bellaiche L (2015) Finite–temperature properties of rare-earth substituted BiFeO3 multiferroc solid solutions. Adv Funct Mater 25:552–558CrossRef
37.
go back to reference Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17853–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17853–17979CrossRef
38.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
39.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
40.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868CrossRef
41.
go back to reference Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron–energy–loss spectra and the structural stability of nickel oxide: an LSDA + U study, Phys Rev B 57:1505-1509. Anisimov VI, Aryasetiawan F and Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys 9:767–808 Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron–energy–loss spectra and the structural stability of nickel oxide: an LSDA + U study, Phys Rev B 57:1505-1509. Anisimov VI, Aryasetiawan F and Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys 9:767–808
42.
go back to reference Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113-1–014113-8CrossRef Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113-1–014113-8CrossRef
43.
go back to reference Wang Y, Saal JE, Wu P, Wang J, Shang S, Liu Z-K, Chen L-Q (2011) First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater 59:4229–4234CrossRef Wang Y, Saal JE, Wu P, Wang J, Shang S, Liu Z-K, Chen L-Q (2011) First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater 59:4229–4234CrossRef
44.
go back to reference Diéguez O, González-Vázquez OE, Wojdeł JC, Íñiguez J (2011) First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B 83:094105-1–09410509410513CrossRef Diéguez O, González-Vázquez OE, Wojdeł JC, Íñiguez J (2011) First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B 83:094105-1–09410509410513CrossRef
45.
go back to reference He C, Ma ZJ, Sun BZ, Sa RJ, Wu K (2015) The electronic, optical and ferroelectric properties of BiFeO3 during polarization reversal: a first principle study. J Alloy Compnd 623:393–400CrossRef He C, Ma ZJ, Sun BZ, Sa RJ, Wu K (2015) The electronic, optical and ferroelectric properties of BiFeO3 during polarization reversal: a first principle study. J Alloy Compnd 623:393–400CrossRef
46.
go back to reference Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L (2007) Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett 99:227602-1–227602-4CrossRef Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L (2007) Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett 99:227602-1–227602-4CrossRef
47.
go back to reference van der Marel D, Sawatzky GA (1988) Electron-electron interaction and localization in d and f transition metals. Phys Rev B 37:10674–10684CrossRef van der Marel D, Sawatzky GA (1988) Electron-electron interaction and localization in d and f transition metals. Phys Rev B 37:10674–10684CrossRef
48.
go back to reference Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interaction in metals. Phys Rev B 43:7570–7574CrossRef Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interaction in metals. Phys Rev B 43:7570–7574CrossRef
49.
go back to reference Singh N, Saini SM, Nautiyal T, Auluck S (2006) Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr and Nd). J Appl Phys 100:083525-1–083525-5 Singh N, Saini SM, Nautiyal T, Auluck S (2006) Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr and Nd). J Appl Phys 100:083525-1–083525-5
50.
go back to reference Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-denstity calculations: a critical analysis. Can J Phys 58:1200–1211CrossRef Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-denstity calculations: a critical analysis. Can J Phys 58:1200–1211CrossRef
51.
go back to reference Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:045112-1–045112-9 Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:045112-1–045112-9
52.
go back to reference Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017–7021CrossRef Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017–7021CrossRef
53.
go back to reference Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Phys Chem 92:5397–5403CrossRef Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Phys Chem 92:5397–5403CrossRef
54.
go back to reference Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRef Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRef
55.
go back to reference Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Shur VYA, Kholkin AL (2014) Temperature and composition-induced structural transitions in Bi 1–x La(Pr) x FeO3 ceramics. J Am Ceram Soc 97:2631–2638CrossRef Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Shur VYA, Kholkin AL (2014) Temperature and composition-induced structural transitions in Bi 1x La(Pr) x FeO3 ceramics. J Am Ceram Soc 97:2631–2638CrossRef
56.
go back to reference Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Willingen M, Salak AN, Kholkin AL (2014) Phase coexistence in Bi 1–x Pr x FeO3 ceramics. J Mater Sci 49:6937–6943. doi:10.1007/s10853-014-8398-6 CrossRef Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Willingen M, Salak AN, Kholkin AL (2014) Phase coexistence in Bi 1x Pr x FeO3 ceramics. J Mater Sci 49:6937–6943. doi:10.​1007/​s10853-014-8398-6 CrossRef
57.
go back to reference Srivastava A, Singh HK, Awana VPS, Srivastava ON (2013) Enhancement in magnetic and dielectric properties of La and Pr cosubstituted BiFeO3. J Alloy Compd 552:336–344CrossRef Srivastava A, Singh HK, Awana VPS, Srivastava ON (2013) Enhancement in magnetic and dielectric properties of La and Pr cosubstituted BiFeO3. J Alloy Compd 552:336–344CrossRef
58.
go back to reference Singh SK, Ishiwara H (2006) Doping effect of rare-earth ions on electrical properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn J Appl Phys 45:3194–3197CrossRef Singh SK, Ishiwara H (2006) Doping effect of rare-earth ions on electrical properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn J Appl Phys 45:3194–3197CrossRef
59.
go back to reference Liu J, Li M, Pei L, Wang J, Yu B, Wang X, Zhao Z (2010) Structural and multiferroic properties of the Ce–doped BiFeO3 thin films. J Alloy Compd 493:544–548CrossRef Liu J, Li M, Pei L, Wang J, Yu B, Wang X, Zhao Z (2010) Structural and multiferroic properties of the Ce–doped BiFeO3 thin films. J Alloy Compd 493:544–548CrossRef
60.
go back to reference Uchida H, Ueno R, Funakubo H, Koda S (2006) Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J Appl Phys 100:014106-1–014106-9 Uchida H, Ueno R, Funakubo H, Koda S (2006) Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J Appl Phys 100:014106-1–014106-9
61.
go back to reference Yuan GL, Or SW, Liu JM (2006) Structural transformation and feeroelectromagnetic behavior in single phase Bi1–xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905-1–052905-3 Yuan GL, Or SW, Liu JM (2006) Structural transformation and feeroelectromagnetic behavior in single phase Bi1–xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905-1–052905-3
62.
go back to reference Lee J-H, Choi HJ, Lee D, Kim MG, Bark CW, Ryu S, Oak M-A, Jang HM (2010) Variation of ferroelectric off-centering distortion and 3d-4p orbital mixing in La-doped BiFeO3 multiferroics. Phys Rev B 82:045113-1–045113-8 Lee J-H, Choi HJ, Lee D, Kim MG, Bark CW, Ryu S, Oak M-A, Jang HM (2010) Variation of ferroelectric off-centering distortion and 3d-4p orbital mixing in La-doped BiFeO3 multiferroics. Phys Rev B 82:045113-1–045113-8
63.
go back to reference Xu X, Tan G, Dong G, Liu W, Ren H (2014) Studies on structural, electrical and optical properties of multiferroic (Ag, Ni and In) codoped Bi0.9Nd0.1FeO3 thin films. Appl Surf Sci 292:702–709CrossRef Xu X, Tan G, Dong G, Liu W, Ren H (2014) Studies on structural, electrical and optical properties of multiferroic (Ag, Ni and In) codoped Bi0.9Nd0.1FeO3 thin films. Appl Surf Sci 292:702–709CrossRef
64.
go back to reference Singh V, Sharma S, Kumar M, Kotnala RK, Dwivedi RK (2014) Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. J Magn Magn Matter 349:264–267CrossRef Singh V, Sharma S, Kumar M, Kotnala RK, Dwivedi RK (2014) Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. J Magn Magn Matter 349:264–267CrossRef
65.
go back to reference Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room-temperature coexistance of large electric polarization and magnetic order in BiFeO3 single crystal. Phys Rev B 76:024116-1–024116-8CrossRef Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room-temperature coexistance of large electric polarization and magnetic order in BiFeO3 single crystal. Phys Rev B 76:024116-1–024116-8CrossRef
66.
go back to reference Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef
67.
go back to reference Kaczkowski J, Pugaczowa-Michalska M, Jezierski A (2015) Electronic structures of BiFeO3 in different crystal phases. Acta Phys Pol, A 127:266–268CrossRef Kaczkowski J, Pugaczowa-Michalska M, Jezierski A (2015) Electronic structures of BiFeO3 in different crystal phases. Acta Phys Pol, A 127:266–268CrossRef
68.
go back to reference Zhang Z, Wu P, Chen L, Wang J (2010) Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl Phys Lett 96:012905-1–012905-3 Zhang Z, Wu P, Chen L, Wang J (2010) Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl Phys Lett 96:012905-1–012905-3
Metadata
Title
First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3
Authors
M. Pugaczowa-Michalska
J. Kaczkowski
Publication date
01-09-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9183-x

Other articles of this Issue 18/2015

Journal of Materials Science 18/2015 Go to the issue

Premium Partners