Skip to main content
Top

2024 | OriginalPaper | Chapter

Fixed Point Theorems in Orthogonal F-Metric Spaces

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

F-metric spaces are defined as a generalization of metric spaces with properties of nonnegativity, self-distance, symmetry and generalized triangular inequality. Moreover, notion of orthogonal F-metric spaces are introduced given by establishing a binary relation on the set. In this work, we give some properties of orthogonal relation on a set and some topological properties of orthogonal F-metric spaces. We introduce some rational type contractions in orthogonal F-metric spaces and prove fixed point theorems for this type contraction. Our results generalize the Jaggi and Ciric type contractions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baghani, H., Gordji, M.E., Ramezani, M.: Orthogonal sets: the axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 18(3), 465–477 (2016)MathSciNetCrossRef Baghani, H., Gordji, M.E., Ramezani, M.: Orthogonal sets: the axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 18(3), 465–477 (2016)MathSciNetCrossRef
2.
go back to reference Banach, S.: Surles operations dans les ensembles abstraits et leur application aux equationsitegrales. Fund. Math. 3, 133–181 (1922)MathSciNetCrossRef Banach, S.: Surles operations dans les ensembles abstraits et leur application aux equationsitegrales. Fund. Math. 3, 133–181 (1922)MathSciNetCrossRef
3.
go back to reference I. Beg, G. Mani, A.J. Gnanaprakasam, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric spaces with applications. J. Funct. Spaces 2021, 6692112 (2021)MathSciNet I. Beg, G. Mani, A.J. Gnanaprakasam, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric spaces with applications. J. Funct. Spaces 2021, 6692112 (2021)MathSciNet
4.
go back to reference Faraji, H., Mirkov, N., Mitrović, Z.D., Ramaswamy, R., Abdelnaby, O.A.A., Radenović, S.: Some new results for (alpha-beta)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 14(11), 2429 (2022)CrossRef Faraji, H., Mirkov, N., Mitrović, Z.D., Ramaswamy, R., Abdelnaby, O.A.A., Radenović, S.: Some new results for (alpha-beta)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 14(11), 2429 (2022)CrossRef
5.
go back to reference Gordji, M.E., Habibi, H.: Fixed point theory in generalized orthogonal metric space. J. Linear Topol. Algebra 6(3), 251–260 (2017)MathSciNet Gordji, M.E., Habibi, H.: Fixed point theory in generalized orthogonal metric space. J. Linear Topol. Algebra 6(3), 251–260 (2017)MathSciNet
6.
go back to reference Gordji, M.E., Ramezani, M., De La Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 18(2), 569–578 (2017)MathSciNetCrossRef Gordji, M.E., Ramezani, M., De La Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 18(2), 569–578 (2017)MathSciNetCrossRef
7.
go back to reference Gungor, N.B.: Extensions of orthogonal p-contraction on orthogonal metric spaces. Symmetry 14(4), 746 (2022)CrossRef Gungor, N.B.: Extensions of orthogonal p-contraction on orthogonal metric spaces. Symmetry 14(4), 746 (2022)CrossRef
8.
go back to reference Gungor, N.B., Turkoglu, D.: Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conf. Proc. 2183, 040011 (2019)CrossRef Gungor, N.B., Turkoglu, D.: Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conf. Proc. 2183, 040011 (2019)CrossRef
9.
go back to reference Jahangir, F., Haghmaram, P., Nourouzi, K.: A note on F-metric spaces. J. Fixed Point Theory Appl. 23, 1–14 (2021)CrossRef Jahangir, F., Haghmaram, P., Nourouzi, K.: A note on F-metric spaces. J. Fixed Point Theory Appl. 23, 1–14 (2021)CrossRef
10.
11.
go back to reference Kanwal, T., Hussain, A., Baghani, H., De la Sen, M.: New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation. Symmetry 12, 832 (2020)CrossRef Kanwal, T., Hussain, A., Baghani, H., De la Sen, M.: New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation. Symmetry 12, 832 (2020)CrossRef
12.
go back to reference Kreyszig, E.: Introductry Functional Analysis with Application. Wiley, New York (1978) Kreyszig, E.: Introductry Functional Analysis with Application. Wiley, New York (1978)
13.
go back to reference Lael, F.: Common fixed point of generalized weakly contractive mappings on orthogonal modular spaces with applications. Int. J. Nonlinear Anal. Appl. 12(2), 1121–1140 (2021) Lael, F.: Common fixed point of generalized weakly contractive mappings on orthogonal modular spaces with applications. Int. J. Nonlinear Anal. Appl. 12(2), 1121–1140 (2021)
14.
go back to reference Lateefa, D., Ahmad, J.: Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 12, 405–411 (2019)MathSciNetCrossRef Lateefa, D., Ahmad, J.: Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 12, 405–411 (2019)MathSciNetCrossRef
15.
go back to reference Mani, G., Gnanaprakasam, A.J., Mishra, L.N., Mishra, V.N.: Fixed point theorems for orthogonal F-Suzuki contraction mappings on O-complete metric space with an applications. Malaya J. Mat. 9(1), 369–377 (2021)MathSciNetCrossRef Mani, G., Gnanaprakasam, A.J., Mishra, L.N., Mishra, V.N.: Fixed point theorems for orthogonal F-Suzuki contraction mappings on O-complete metric space with an applications. Malaya J. Mat. 9(1), 369–377 (2021)MathSciNetCrossRef
16.
go back to reference Mitrovic, Z.D., Aydi, H., Hussain, N., Mukheimer, A.: Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application. Mathematics 7, 387 (2019)CrossRef Mitrovic, Z.D., Aydi, H., Hussain, N., Mukheimer, A.: Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application. Mathematics 7, 387 (2019)CrossRef
17.
go back to reference Ramezani, M., Baghani, H.: Contractive gauge functions in strongly orthogonal metric spaces. Int. J. Nonlinear Anal. Appl. 8(2) 23–28 (2017) Ramezani, M., Baghani, H.: Contractive gauge functions in strongly orthogonal metric spaces. Int. J. Nonlinear Anal. Appl. 8(2) 23–28 (2017)
18.
go back to reference Sawangsup, K., Sintunavarat, W., Cho, Y. J.: Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces. J. Fixed Point Theory Appl. 22, 10 (2020)MathSciNetCrossRef Sawangsup, K., Sintunavarat, W., Cho, Y. J.: Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces. J. Fixed Point Theory Appl. 22, 10 (2020)MathSciNetCrossRef
19.
go back to reference Senapati, T., Dey, L.K., Damjanovic, B., Chanda, A.: New fixed results in orthogonal metric spaces with an application. Kragujevac J. Math. 42, 505–516 (2018)MathSciNetCrossRef Senapati, T., Dey, L.K., Damjanovic, B., Chanda, A.: New fixed results in orthogonal metric spaces with an application. Kragujevac J. Math. 42, 505–516 (2018)MathSciNetCrossRef
20.
go back to reference Uddin, F., Park, C., Javed, K., Arshad, M., Lee, J.R.: Orthogonal m-metric spaces and an application to solve integral equations. Adv. Differ. Equ. 2021, 159 (2021) Uddin, F., Park, C., Javed, K., Arshad, M., Lee, J.R.: Orthogonal m-metric spaces and an application to solve integral equations. Adv. Differ. Equ. 2021, 159 (2021)
21.
go back to reference Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)
22.
go back to reference Zhou, M., Saleem, N., Ali, B., Misha, M.M., Hierro, A.F.R.L.: Common best proximity points and completeness of F-metric spaces. Mathematics 11, 81 (2023) Zhou, M., Saleem, N., Ali, B., Misha, M.M., Hierro, A.F.R.L.: Common best proximity points and completeness of F-metric spaces. Mathematics 11, 81 (2023)
Metadata
Title
Fixed Point Theorems in Orthogonal F-Metric Spaces
Author
Vildan Ozturk
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_13

Premium Partners