Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Flame-Retardant Polyurethanes

Authors : Suprakas Sinha Ray, Malkappa Kuruma

Published in: Halogen-Free Flame-Retardant Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1937, the German scientist Otto Bayer and his team discovered poly addition reactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O. Bayer, Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew. Chem. 59, 257–272 (1947)CrossRef O. Bayer, Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew. Chem. 59, 257–272 (1947)CrossRef
2.
go back to reference O. Bayer, E. Muller, S. Petersen, H. Piepenbrink, E. Windemuth, New types of highly elastic substances. Rubber Chem. Technol. 23, 812–835 (1950)CrossRef O. Bayer, E. Muller, S. Petersen, H. Piepenbrink, E. Windemuth, New types of highly elastic substances. Rubber Chem. Technol. 23, 812–835 (1950)CrossRef
3.
go back to reference M. Sato, Studies on l-alkenyl isocyanates and their derivatives. J. Org. Chem. 26, 770–779 (1961)CrossRef M. Sato, Studies on l-alkenyl isocyanates and their derivatives. J. Org. Chem. 26, 770–779 (1961)CrossRef
4.
go back to reference M. Barikani, M. Barmar, Thermoplastic polyurethane elastomers: synthesis, and study of effective structural parameters. Iran. Polym. J. 5, 231–235 (1996) M. Barikani, M. Barmar, Thermoplastic polyurethane elastomers: synthesis, and study of effective structural parameters. Iran. Polym. J. 5, 231–235 (1996)
5.
go back to reference Y. Camberlin, J.P. Ascault, Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas. J. Polym. Chem. Part A Polym. Chem. 21, 415–423 (1983)CrossRef Y. Camberlin, J.P. Ascault, Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas. J. Polym. Chem. Part A Polym. Chem. 21, 415–423 (1983)CrossRef
6.
go back to reference S.L. Cooper, A.V. Tobolsky, Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 10, 1837–1844 (1966)CrossRef S.L. Cooper, A.V. Tobolsky, Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 10, 1837–1844 (1966)CrossRef
7.
go back to reference C. Chen-Tsai, E. Thomas, W. MacKnight, N. Schneider, Structure and morphology of segmented polyurethanes: 3. Electron microscopy and small angle X-ray scattering studies of amorphous random segmented polyurethanes. Polymer 27, 659–666 (1986)CrossRef C. Chen-Tsai, E. Thomas, W. MacKnight, N. Schneider, Structure and morphology of segmented polyurethanes: 3. Electron microscopy and small angle X-ray scattering studies of amorphous random segmented polyurethanes. Polymer 27, 659–666 (1986)CrossRef
8.
go back to reference C.S. Schollenberger, Thermoplastic polyurethane elastomers. Handb. Elastomers 11, 375–409 (1988) C.S. Schollenberger, Thermoplastic polyurethane elastomers. Handb. Elastomers 11, 375–409 (1988)
9.
go back to reference S. Clough, N. Schneider, Structural studies on urethane elastomers. J. Macromol. Sci. Part B Phys. 2, 553–566 (1968)CrossRef S. Clough, N. Schneider, Structural studies on urethane elastomers. J. Macromol. Sci. Part B Phys. 2, 553–566 (1968)CrossRef
10.
go back to reference A. Lilaonitkul, S. Cooper, Advances in Urethane Science and Technology, vol. 7 (Technomic, Westport, CT, 1979), p. 163 A. Lilaonitkul, S. Cooper, Advances in Urethane Science and Technology, vol. 7 (Technomic, Westport, CT, 1979), p. 163
11.
go back to reference D.J. Martin, G.F. Meijs, G.M. Renwick, P.A. Gunatillake, S.J. Mccarthy, Effect of soft-segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. J. Appl. Polym. Sci. 60, 557–571 (1996)CrossRef D.J. Martin, G.F. Meijs, G.M. Renwick, P.A. Gunatillake, S.J. Mccarthy, Effect of soft-segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. J. Appl. Polym. Sci. 60, 557–571 (1996)CrossRef
12.
go back to reference H. Tagawa, K. Kurita, E. Wada, Investigations on linear segmented polyurethane elastomers, 1. Temperature dependence of microphase segregated structure. Macromol. Chem. Phys. 185, 2233–2240 (1984)CrossRef H. Tagawa, K. Kurita, E. Wada, Investigations on linear segmented polyurethane elastomers, 1. Temperature dependence of microphase segregated structure. Macromol. Chem. Phys. 185, 2233–2240 (1984)CrossRef
13.
go back to reference B.N. Rao, P.J.P. Yadav, M. Kuruma, T. Jana, P. Sastry, Triazine functionalized hydroxyl terminated polybutadiene polyurethane: influence of triazine structure. Polymer 77, 323–333 (2015)CrossRef B.N. Rao, P.J.P. Yadav, M. Kuruma, T. Jana, P. Sastry, Triazine functionalized hydroxyl terminated polybutadiene polyurethane: influence of triazine structure. Polymer 77, 323–333 (2015)CrossRef
14.
go back to reference B. Sreedhar, D. Chattopadhyay, M. Karunakar, A. Sastry, Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J. Appl. Polym. Sci. 101, 25–34 (2006)CrossRef B. Sreedhar, D. Chattopadhyay, M. Karunakar, A. Sastry, Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J. Appl. Polym. Sci. 101, 25–34 (2006)CrossRef
15.
go back to reference T.L. Wang, T.H. Hsieh, Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polym. Degrad. Stab. 55, 95–102 (1997)CrossRef T.L. Wang, T.H. Hsieh, Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polym. Degrad. Stab. 55, 95–102 (1997)CrossRef
16.
go back to reference S. Sarkar, B. Adhikari, Thermal stability of lignin–hydroxy-terminated polybutadiene copolyurethanes. Polym. Degrad. Stab. 73, 169–175 (2001)CrossRef S. Sarkar, B. Adhikari, Thermal stability of lignin–hydroxy-terminated polybutadiene copolyurethanes. Polym. Degrad. Stab. 73, 169–175 (2001)CrossRef
17.
go back to reference Z.S. Petrović, Z. Zavargo, J.H. Flyn, W.J. Macknight, Thermal degradation of segmented polyurethanes. J. Appl. Polym. Sci. 51, 1087–1095 (1994)CrossRef Z.S. Petrović, Z. Zavargo, J.H. Flyn, W.J. Macknight, Thermal degradation of segmented polyurethanes. J. Appl. Polym. Sci. 51, 1087–1095 (1994)CrossRef
18.
go back to reference K. Pielichowski, J. Pielichowski, H. Altenburg, H.J. Balloff, Thermische degradation von MDI-basierenden polyurethanen: charakteristische abhängigkeiten zwischen den zersetzungsparametern. Thermochim. Acta 284, 419–428 (1996)CrossRef K. Pielichowski, J. Pielichowski, H. Altenburg, H.J. Balloff, Thermische degradation von MDI-basierenden polyurethanen: charakteristische abhängigkeiten zwischen den zersetzungsparametern. Thermochim. Acta 284, 419–428 (1996)CrossRef
19.
go back to reference Z. Ge, X. Zhang, J. Dai, W. Li, Y. Luo, Synthesis, characterization and properties of a novel fluorinated polyurethane. Eur. Polym. J. 45, 530–536 (2009)CrossRef Z. Ge, X. Zhang, J. Dai, W. Li, Y. Luo, Synthesis, characterization and properties of a novel fluorinated polyurethane. Eur. Polym. J. 45, 530–536 (2009)CrossRef
20.
go back to reference N. Grassie, M. Zulfiqar, M. Guy, Thermal degradation of a series of polyester polyurethanes. J. Polym. Sci. Part A: Polym. Chem. 18, 265–274 (1980) N. Grassie, M. Zulfiqar, M. Guy, Thermal degradation of a series of polyester polyurethanes. J. Polym. Sci. Part A: Polym. Chem. 18, 265–274 (1980)
21.
go back to reference F.M. Coutinho, M.C. Delpech, Degradation profile of films cast from aqueous polyurethane dispersions. Polym. Degrad. Stab. 70, 49–57 (2000)CrossRef F.M. Coutinho, M.C. Delpech, Degradation profile of films cast from aqueous polyurethane dispersions. Polym. Degrad. Stab. 70, 49–57 (2000)CrossRef
22.
go back to reference Y. Song, W. Chen, T. Yu, K. Linliu, Y. Tseng, Effect of isocyanates on the crystallinity and thermal stability of polyurethanes. J. Appl. Polym. Sci. 62, 827–834 (1996)CrossRef Y. Song, W. Chen, T. Yu, K. Linliu, Y. Tseng, Effect of isocyanates on the crystallinity and thermal stability of polyurethanes. J. Appl. Polym. Sci. 62, 827–834 (1996)CrossRef
23.
go back to reference D. Chattopadhyay, B. Sreedhar, K. Raju, Thermal stability of chemically crosslinked moisture-cured polyurethane coatings. J. Appl. Polym. Sci. 95, 1509–1518 (2005)CrossRef D. Chattopadhyay, B. Sreedhar, K. Raju, Thermal stability of chemically crosslinked moisture-cured polyurethane coatings. J. Appl. Polym. Sci. 95, 1509–1518 (2005)CrossRef
24.
go back to reference J. Liu, D. Ma, Study on synthesis and thermal properties of polyurethane–imide copolymers with multiple hard segments. J. Appl. Polym. Sci. 84, 2206–2215 (2002)CrossRef J. Liu, D. Ma, Study on synthesis and thermal properties of polyurethane–imide copolymers with multiple hard segments. J. Appl. Polym. Sci. 84, 2206–2215 (2002)CrossRef
25.
go back to reference M.L. Matuszak, K. Frisch, Thermal degradation of linear polyurethanes and model biscarbamates. J. Polym. Sci. Part A: Polym. Chem. 11, 637–648 (1973) M.L. Matuszak, K. Frisch, Thermal degradation of linear polyurethanes and model biscarbamates. J. Polym. Sci. Part A: Polym. Chem. 11, 637–648 (1973)
26.
go back to reference L. Zhang, J. Huang, Effects of hard-segment compositions on properties of polyurethane–nitrolignin films. J. Appl. Polym. Sci. 81, 3251–3259 (2002)CrossRef L. Zhang, J. Huang, Effects of hard-segment compositions on properties of polyurethane–nitrolignin films. J. Appl. Polym. Sci. 81, 3251–3259 (2002)CrossRef
27.
go back to reference M. Kuruma, T. Jana, Simultaneous improvement of tensile strength and elongation: an unprecedented observation in the case of hydroxyl terminated polybutadiene polyurethanes. Ind. Eng. Chem. Res. 52, 12887–12896 (2013)CrossRef M. Kuruma, T. Jana, Simultaneous improvement of tensile strength and elongation: an unprecedented observation in the case of hydroxyl terminated polybutadiene polyurethanes. Ind. Eng. Chem. Res. 52, 12887–12896 (2013)CrossRef
28.
go back to reference H.K. Lee, S.W. Ko, Structure and thermal properties of polyether polyurethaneurea elastomers. J. Appl. Polym. Sci. 50, 1269–1280 (1993)CrossRef H.K. Lee, S.W. Ko, Structure and thermal properties of polyether polyurethaneurea elastomers. J. Appl. Polym. Sci. 50, 1269–1280 (1993)CrossRef
29.
go back to reference D.J. Liaw, The relative physical and thermal properties of polyurethane elastomers: effect of chain extenders of bisphenols, diisocyanate, and polyol structures. J. Appl. Polym. Sci. 66, 1251–1265 (1997)CrossRef D.J. Liaw, The relative physical and thermal properties of polyurethane elastomers: effect of chain extenders of bisphenols, diisocyanate, and polyol structures. J. Appl. Polym. Sci. 66, 1251–1265 (1997)CrossRef
30.
go back to reference S. Zulfiqar, M. Zulfiqar, T. Kausar, I. McNeill, Thermal degradation of phenyl methacrylate-methyl methacrylate copolymers. Polym. Degrad. Stab. 17, 327–339 (1987)CrossRef S. Zulfiqar, M. Zulfiqar, T. Kausar, I. McNeill, Thermal degradation of phenyl methacrylate-methyl methacrylate copolymers. Polym. Degrad. Stab. 17, 327–339 (1987)CrossRef
31.
go back to reference S. Subramani, J. Lee, I. Cheong, J. Kim, Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions. J. Appl. Polym. Sci. 98, 620–631 (2005)CrossRef S. Subramani, J. Lee, I. Cheong, J. Kim, Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions. J. Appl. Polym. Sci. 98, 620–631 (2005)CrossRef
32.
go back to reference M. Abu-Zeid, E. Nofal, F. Abdul-Rasoul, M. Marafi, G. Mahmoud, A. Ledwith, Photoacoustic study of thermal degradation of polyurethane. J. Appl. Polym. Sci. 28, 2317–2324 (1983)CrossRef M. Abu-Zeid, E. Nofal, F. Abdul-Rasoul, M. Marafi, G. Mahmoud, A. Ledwith, Photoacoustic study of thermal degradation of polyurethane. J. Appl. Polym. Sci. 28, 2317–2324 (1983)CrossRef
33.
go back to reference J. Ferguson, Z. Petrovic, Thermal stability of segmented polyurethanes. Eur. Polym. J. 12, 177–181 (1976)CrossRef J. Ferguson, Z. Petrovic, Thermal stability of segmented polyurethanes. Eur. Polym. J. 12, 177–181 (1976)CrossRef
34.
go back to reference S. Oprea, Effect of structure on the thermal stability of curable polyester urethane urea acrylates. Polym. Degrad. Stab. 75, 9–15 (2002)CrossRef S. Oprea, Effect of structure on the thermal stability of curable polyester urethane urea acrylates. Polym. Degrad. Stab. 75, 9–15 (2002)CrossRef
35.
go back to reference D. Chattopadhyay, B. Sreedhar, K. Raju, Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea. J. Polym. Sci. Part B: Polym. Phys. 44, 102–118 (2006)CrossRef D. Chattopadhyay, B. Sreedhar, K. Raju, Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea. J. Polym. Sci. Part B: Polym. Phys. 44, 102–118 (2006)CrossRef
36.
go back to reference M. Modesti, A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate–polyurethane foams. Eur. Polym. J. 37, 949–954 (2001)CrossRef M. Modesti, A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate–polyurethane foams. Eur. Polym. J. 37, 949–954 (2001)CrossRef
37.
go back to reference X.M. Qin, F. Fang, X.H. Yang, X.L. Wang, Z. Zheng, Synthesis and characterization of polyurethane urea based on fluorine-containing bisphenoxydiamine. J. Appl. Polym. Sci. 102, 1863–1869 (2006)CrossRef X.M. Qin, F. Fang, X.H. Yang, X.L. Wang, Z. Zheng, Synthesis and characterization of polyurethane urea based on fluorine-containing bisphenoxydiamine. J. Appl. Polym. Sci. 102, 1863–1869 (2006)CrossRef
38.
go back to reference E.G. Bajsić, V. Rek, Thermal stability of polyurethane elastomers before and after UV irradiation. J. Appl. Polym. Sci. 79, 864–873 (2001)CrossRef E.G. Bajsić, V. Rek, Thermal stability of polyurethane elastomers before and after UV irradiation. J. Appl. Polym. Sci. 79, 864–873 (2001)CrossRef
39.
go back to reference M. Semsarzadeh, A. Navarchian, Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly (urethane-isocyanurate). J. Appl. Polym. Sci. 90, 963–972 (2003)CrossRef M. Semsarzadeh, A. Navarchian, Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly (urethane-isocyanurate). J. Appl. Polym. Sci. 90, 963–972 (2003)CrossRef
40.
go back to reference Y.D. Zhang, S.B. Shang, X.Y. Zhang, D. Wang, D. Hourston, Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability. J. Appl. Polym. Sci. 59, 1167–1171 (1996)CrossRef Y.D. Zhang, S.B. Shang, X.Y. Zhang, D. Wang, D. Hourston, Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability. J. Appl. Polym. Sci. 59, 1167–1171 (1996)CrossRef
41.
go back to reference S. Kohlstruk, I. Bockhoff, M. Ewald, R. Lomoelder, Catalyst and process for preparing low-viscosity and color-reduced polyisocyanates containing isocyanurate groups, Google Patents, 2006 S. Kohlstruk, I. Bockhoff, M. Ewald, R. Lomoelder, Catalyst and process for preparing low-viscosity and color-reduced polyisocyanates containing isocyanurate groups, Google Patents, 2006
42.
go back to reference M. Ewald, M. Windmueller, W. Poersch, S. Kohlstruk, Catalysts for preparing polyisocyanates containing isocyanurate groups, and their use, Google Patents, 2005 M. Ewald, M. Windmueller, W. Poersch, S. Kohlstruk, Catalysts for preparing polyisocyanates containing isocyanurate groups, and their use, Google Patents, 2005
43.
go back to reference R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, N. Mallikarjuna, T. Aminabhavi, Degradation profiles of polyester-urethane (HP-MDI) and polyester-melamine (HP-HMMM) coatings: a thermal study. J. Appl. Polym. Sci. 97, 518–526 (2005)CrossRef R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, N. Mallikarjuna, T. Aminabhavi, Degradation profiles of polyester-urethane (HP-MDI) and polyester-melamine (HP-HMMM) coatings: a thermal study. J. Appl. Polym. Sci. 97, 518–526 (2005)CrossRef
44.
go back to reference R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, Cure, viscoelastic and mechanical properties of hydroxylated polyester melamine high solids coatings. J. Mater. Sci. 37, 4911–4918 (2002)CrossRef R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, Cure, viscoelastic and mechanical properties of hydroxylated polyester melamine high solids coatings. J. Mater. Sci. 37, 4911–4918 (2002)CrossRef
45.
go back to reference J. Garrett, J. Runt, J. Lin, Microphase separation of segmented poly (urethane urea) block copolymers. Macromolecules 33, 6353–6359 (2000)CrossRef J. Garrett, J. Runt, J. Lin, Microphase separation of segmented poly (urethane urea) block copolymers. Macromolecules 33, 6353–6359 (2000)CrossRef
46.
go back to reference S. Chang, T. Yu, C. Huang, W. Chen, K. Linliu, T. Lin, Effect of polyester side-chains on the phase segregation of polyurethanes using small-angle X-ray scattering. Polymer 39, 3479–3489 (1998)CrossRef S. Chang, T. Yu, C. Huang, W. Chen, K. Linliu, T. Lin, Effect of polyester side-chains on the phase segregation of polyurethanes using small-angle X-ray scattering. Polymer 39, 3479–3489 (1998)CrossRef
47.
go back to reference J. Garrett, J. Lin, J. Runt, Influence of preparation conditions on microdomain formation in poly (urethane urea) block copolymers. Macromolecules 35, 161–168 (2002)CrossRef J. Garrett, J. Lin, J. Runt, Influence of preparation conditions on microdomain formation in poly (urethane urea) block copolymers. Macromolecules 35, 161–168 (2002)CrossRef
48.
go back to reference A. Saiani, C. Rochas, G. Eeckhaut, W. Daunch, J.W. Leenslag, J. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation. Macromolecules 37, 1411–1421 (2004)CrossRef A. Saiani, C. Rochas, G. Eeckhaut, W. Daunch, J.W. Leenslag, J. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation. Macromolecules 37, 1411–1421 (2004)CrossRef
49.
go back to reference A. Aneja, G.L. Wilkes, A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44, 7221–7228 (2003)CrossRef A. Aneja, G.L. Wilkes, A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44, 7221–7228 (2003)CrossRef
50.
go back to reference M. Song, H. Xia, K. Yao, D. Hourston, A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite. Eur. Polym. J. 41, 259–266 (2005)CrossRef M. Song, H. Xia, K. Yao, D. Hourston, A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite. Eur. Polym. J. 41, 259–266 (2005)CrossRef
51.
go back to reference E. Dyer, R.E. Read, New catalysts for the conversion of isocyanates to carbodiimides. J. Org. Chem. 26, 4677–4678 (1961)CrossRef E. Dyer, R.E. Read, New catalysts for the conversion of isocyanates to carbodiimides. J. Org. Chem. 26, 4677–4678 (1961)CrossRef
52.
go back to reference J. Blackwell, M. Nagarajan, Conformational analysis of poly (MDI-butandiol) hard segment in polyurethane elastomers. Polymer 22, 202–208 (1981)CrossRef J. Blackwell, M. Nagarajan, Conformational analysis of poly (MDI-butandiol) hard segment in polyurethane elastomers. Polymer 22, 202–208 (1981)CrossRef
53.
go back to reference J. Blackwell, J. Quay, M. Nagarajan, L. Born, H. Hespe, Molecular parameters for the prediction of polyurethane structures. J. Polym. Sci. Part B: Polym. Phys. 22, 1247–1259 (1984) J. Blackwell, J. Quay, M. Nagarajan, L. Born, H. Hespe, Molecular parameters for the prediction of polyurethane structures. J. Polym. Sci. Part B: Polym. Phys. 22, 1247–1259 (1984)
54.
go back to reference J. Blackwell, M. Nagarajan, T. Hoitink, Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments. Polymer 23, 950–956 (1982)CrossRef J. Blackwell, M. Nagarajan, T. Hoitink, Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments. Polymer 23, 950–956 (1982)CrossRef
55.
go back to reference D.K. Chattopadhyay, K. Raju, Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32, 352–418 (2007)CrossRef D.K. Chattopadhyay, K. Raju, Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32, 352–418 (2007)CrossRef
56.
go back to reference R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, N. Mallikarjuna, T. Aminabhavi, Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J. Appl. Polym. Sci. 99, 368–380 (2006)CrossRef R. Narayan, D. Chattopadhyay, B. Sreedhar, K. Raju, N. Mallikarjuna, T. Aminabhavi, Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J. Appl. Polym. Sci. 99, 368–380 (2006)CrossRef
57.
go back to reference M. Szycher, Szycher’s Handbook of Polyurethanes (CRC Press, 1999) M. Szycher, Szycher’s Handbook of Polyurethanes (CRC Press, 1999)
58.
go back to reference K. Ashida, K. Saiki, J. Goto, K. Sasaki, Polyisocyanurate Foams Modified by Thermally Stable Linkages (ACS Publications, 1997) K. Ashida, K. Saiki, J. Goto, K. Sasaki, Polyisocyanurate Foams Modified by Thermally Stable Linkages (ACS Publications, 1997)
59.
go back to reference H. Fabris, Thermal and oxidative stability of urethanes. Adv. Urethane Sci. Technol. 6, 173–196 (1978) H. Fabris, Thermal and oxidative stability of urethanes. Adv. Urethane Sci. Technol. 6, 173–196 (1978)
60.
go back to reference G. Lligadas, J.C. Ronda, M. Galià, V. Cádiz, Poly (ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Biomacromol 8, 686–692 (2007)CrossRef G. Lligadas, J.C. Ronda, M. Galià, V. Cádiz, Poly (ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Biomacromol 8, 686–692 (2007)CrossRef
61.
go back to reference M. Kuruma, T. Jana, Hydrophobic, water-dispersible polyurethane: role of polybutadiene diol structure. Ind. Eng. Chem. Res. 54, 7423–7435 (2015)CrossRef M. Kuruma, T. Jana, Hydrophobic, water-dispersible polyurethane: role of polybutadiene diol structure. Ind. Eng. Chem. Res. 54, 7423–7435 (2015)CrossRef
62.
go back to reference P. Kordomenos, J. Kresta, Thermal stability of isocyanate-based polymers. 1. Kinetics of the thermal dissociation of urethane, oxazolidone, and isocyanurate groups. Macromolecules 14, 1434–1437 (1981)CrossRef P. Kordomenos, J. Kresta, Thermal stability of isocyanate-based polymers. 1. Kinetics of the thermal dissociation of urethane, oxazolidone, and isocyanurate groups. Macromolecules 14, 1434–1437 (1981)CrossRef
63.
go back to reference W. Endres, M.D. Lechner, R. Steinberger, The kinetics of the thermal decomposition of thermoplastic polyurethane elastomers under thermoplastic processing conditions. Macromol. Mater. Eng. 288, 525–530 (2003)CrossRef W. Endres, M.D. Lechner, R. Steinberger, The kinetics of the thermal decomposition of thermoplastic polyurethane elastomers under thermoplastic processing conditions. Macromol. Mater. Eng. 288, 525–530 (2003)CrossRef
64.
go back to reference X. Qin, J. Xiong, X. Yang, X. Wang, Z. Zheng, Preparation, morphology, and properties of polyurethane–urea elastomers derived from sulphone-containing aromatic diamine. J. Appl. Polym. Sci. 104, 3554–3561 (2007)CrossRef X. Qin, J. Xiong, X. Yang, X. Wang, Z. Zheng, Preparation, morphology, and properties of polyurethane–urea elastomers derived from sulphone-containing aromatic diamine. J. Appl. Polym. Sci. 104, 3554–3561 (2007)CrossRef
65.
go back to reference D. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34, 1068–1133 (2009)CrossRef D. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34, 1068–1133 (2009)CrossRef
66.
go back to reference Y.L. Liu, C.S. Wu, K.Y. Hsu, T.C. Chang, Flame-retardant epoxy resins from o-cresol novolac epoxy cured with a phosphorus-containing aralkyl novolac. J. Polym. Sci. Part A: Polym. Chem. 40, 2329–2339 (2002)CrossRef Y.L. Liu, C.S. Wu, K.Y. Hsu, T.C. Chang, Flame-retardant epoxy resins from o-cresol novolac epoxy cured with a phosphorus-containing aralkyl novolac. J. Polym. Sci. Part A: Polym. Chem. 40, 2329–2339 (2002)CrossRef
67.
go back to reference M. Thirumal, D. Dhastgir, N.K. Singha, B. Manjunath, Y. Naik, Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci. 108, 1810–1817 (2008)CrossRef M. Thirumal, D. Dhastgir, N.K. Singha, B. Manjunath, Y. Naik, Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci. 108, 1810–1817 (2008)CrossRef
68.
go back to reference G. Moroi, C. Ciobanu, Aspects of polyesterurethane interaction with metallic ions: II. Synthesis and thermal behavior of polyurethane interaction products with manganese and copper ions. Thermochim. Acta 385, 153–162 (2002)CrossRef G. Moroi, C. Ciobanu, Aspects of polyesterurethane interaction with metallic ions: II. Synthesis and thermal behavior of polyurethane interaction products with manganese and copper ions. Thermochim. Acta 385, 153–162 (2002)CrossRef
69.
go back to reference X. Liu, J. Hao, S. Gaan, Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 6, 74742–74756 (2016)CrossRef X. Liu, J. Hao, S. Gaan, Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 6, 74742–74756 (2016)CrossRef
70.
go back to reference T.L. Junod, Gaseous emissions and toxic hazards associated with plastics in fire situations: a literature review, NSAA Technical Report (NASA-TN-D-8338, E-8549), 1976 T.L. Junod, Gaseous emissions and toxic hazards associated with plastics in fire situations: a literature review, NSAA Technical Report (NASA-TN-D-8338, E-8549), 1976
71.
go back to reference D. Gross, J.J. Loftus, T.G. Lee, V.E. Gray, Smoke and Gases Produced by Burning Aircraft Interior Materials (National Bureau of Standards, Washington DC, 1968) D. Gross, J.J. Loftus, T.G. Lee, V.E. Gray, Smoke and Gases Produced by Burning Aircraft Interior Materials (National Bureau of Standards, Washington DC, 1968)
72.
go back to reference H. MacFarland, The pyrolysis products of plastics—problems in defining their toxicity. Am. Ind. Hyg. Assoc. J. 29, 7–9 (1968)PubMedCrossRef H. MacFarland, The pyrolysis products of plastics—problems in defining their toxicity. Am. Ind. Hyg. Assoc. J. 29, 7–9 (1968)PubMedCrossRef
73.
go back to reference D. Purser, P. Grimshaw, The incapacitative effects of exposure to the thermal decomposition products of polyurethane foams. Fire Mater. 8, 10–16 (1984)CrossRef D. Purser, P. Grimshaw, The incapacitative effects of exposure to the thermal decomposition products of polyurethane foams. Fire Mater. 8, 10–16 (1984)CrossRef
74.
go back to reference G. Jeffs, H. Sand, Polyurethane and fires: the role of thermal decomposition products on life risk. Cell. Polym. 3, 401–409 (1984) G. Jeffs, H. Sand, Polyurethane and fires: the role of thermal decomposition products on life risk. Cell. Polym. 3, 401–409 (1984)
75.
go back to reference M. Herrera, M. Wilhelm, G. Matuschek, A. Kettrup, Thermoanalytical and pyrolysis studies of nitrogen containing polymers. J. Anal. Appl. Pyrolysis 58, 173–188 (2001)CrossRef M. Herrera, M. Wilhelm, G. Matuschek, A. Kettrup, Thermoanalytical and pyrolysis studies of nitrogen containing polymers. J. Anal. Appl. Pyrolysis 58, 173–188 (2001)CrossRef
76.
go back to reference D. Price, Y. Liu, G.J. Milnes, R. Hull, B.K. Kandola, A.R. Horrocks, An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam. Fire Mater. 26, 201–206 (2002)CrossRef D. Price, Y. Liu, G.J. Milnes, R. Hull, B.K. Kandola, A.R. Horrocks, An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam. Fire Mater. 26, 201–206 (2002)CrossRef
77.
go back to reference S.G. Vincent, A Search for Identity: Exploring Core Competencies for Interdisciplinary Environmental Programs (Oklahoma State University, 2010) S.G. Vincent, A Search for Identity: Exploring Core Competencies for Interdisciplinary Environmental Programs (Oklahoma State University, 2010)
79.
go back to reference K. Salasinska, M. Borucka, M. Leszczyńska, W. Zatorski, M. Celiński, A. Gajek, J. Ryszkowska, Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J. Therm. Anal. Calorim. 130, 131–141 (2017)CrossRef K. Salasinska, M. Borucka, M. Leszczyńska, W. Zatorski, M. Celiński, A. Gajek, J. Ryszkowska, Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J. Therm. Anal. Calorim. 130, 131–141 (2017)CrossRef
80.
go back to reference G. Nelson, Fire and Polymers. II: Materials and Test for Hazard Prevention. ACS Symposium Series (1995) G. Nelson, Fire and Polymers. II: Materials and Test for Hazard Prevention. ACS Symposium Series (1995)
81.
go back to reference R.E. Lyon, Solid-state thermochemistry of flaming combustion (Marcel Dekker Inc., NY, 2000) R.E. Lyon, Solid-state thermochemistry of flaming combustion (Marcel Dekker Inc., NY, 2000)
82.
go back to reference R. Jian, P. Wang, W. Duan, J. Wang, X. Zheng, J. Weng, Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind. Eng. Chem. Res. 55, 11520–11527 (2016)CrossRef R. Jian, P. Wang, W. Duan, J. Wang, X. Zheng, J. Weng, Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind. Eng. Chem. Res. 55, 11520–11527 (2016)CrossRef
83.
go back to reference Q. Tang, R. Yang, Y. Song, J. He, Investigations of flame-retarded thermoplastic poly (imide–urethane)s with intumescent flame retardants. Ind. Eng. Chem. Res. 53, 9728–9737 (2014)CrossRef Q. Tang, R. Yang, Y. Song, J. He, Investigations of flame-retarded thermoplastic poly (imide–urethane)s with intumescent flame retardants. Ind. Eng. Chem. Res. 53, 9728–9737 (2014)CrossRef
84.
go back to reference T. Mariappan, Y. Zhou, J. Hao, C.A. Wilkie, Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 49, 3171–3180 (2013)CrossRef T. Mariappan, Y. Zhou, J. Hao, C.A. Wilkie, Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 49, 3171–3180 (2013)CrossRef
85.
go back to reference P. Blomqvist, T. Hertzberg, M. Dalene, G. Skarping, Isocyanates, aminoisocyanates and amines from fires—a screening of common materials found in buildings. Fire Mater. 27, 275–294 (2003)CrossRef P. Blomqvist, T. Hertzberg, M. Dalene, G. Skarping, Isocyanates, aminoisocyanates and amines from fires—a screening of common materials found in buildings. Fire Mater. 27, 275–294 (2003)CrossRef
86.
go back to reference S.V. Levchik, E.D. Weil, Combustion and fire retardancy of aliphatic nylons. Polym. Int. 49, 1033–1073 (2000)CrossRef S.V. Levchik, E.D. Weil, Combustion and fire retardancy of aliphatic nylons. Polym. Int. 49, 1033–1073 (2000)CrossRef
87.
go back to reference W.L. Grosshandler, A Review of Measurements and Candidate Signatures for Early Fire Detection (National Institute of Standards and Technology Gaithersburg, MD, 1995) W.L. Grosshandler, A Review of Measurements and Candidate Signatures for Early Fire Detection (National Institute of Standards and Technology Gaithersburg, MD, 1995)
88.
go back to reference W. Woolley, A.I. Wadley, P. Field, Studies of the thermal decomposition of flexible polyurethane foams in air. Fire Research Notes 951, 1972 W. Woolley, A.I. Wadley, P. Field, Studies of the thermal decomposition of flexible polyurethane foams in air. Fire Research Notes 951, 1972
89.
go back to reference C. Branca, C. Di Blasi, A. Casu, V. Morone, C. Costa, Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion. Thermochim. Acta 399, 127–137 (2003)CrossRef C. Branca, C. Di Blasi, A. Casu, V. Morone, C. Costa, Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion. Thermochim. Acta 399, 127–137 (2003)CrossRef
90.
go back to reference J. Hastie, Molecular basis of flame inhibition. J. Res. Natl. Bur. Stand. Phys. Chem. 77, 733–754 (1973)CrossRef J. Hastie, Molecular basis of flame inhibition. J. Res. Natl. Bur. Stand. Phys. Chem. 77, 733–754 (1973)CrossRef
91.
go back to reference P. Bonczyk, Effect of ferrocene on soot in a prevaporized iso-octane/air diffusion flame. Combust. Flame 87, 233–244 (1991)CrossRef P. Bonczyk, Effect of ferrocene on soot in a prevaporized iso-octane/air diffusion flame. Combust. Flame 87, 233–244 (1991)CrossRef
92.
go back to reference D. Cotton, N. Friswell, D. Jenkins, The suppression of soot emission from flames by metal additives. Combust. Flame 17, 87–98 (1971)CrossRef D. Cotton, N. Friswell, D. Jenkins, The suppression of soot emission from flames by metal additives. Combust. Flame 17, 87–98 (1971)CrossRef
93.
go back to reference F. Gao, D. Price, G. Milnes, B. Eling, C. Lindsay, P. McGrail, Laser pyrolysis of polymers and its relation to polymer fire behaviour. J. Anal. Appl. Pyrolysis 40, 217–231 (1997)CrossRef F. Gao, D. Price, G. Milnes, B. Eling, C. Lindsay, P. McGrail, Laser pyrolysis of polymers and its relation to polymer fire behaviour. J. Anal. Appl. Pyrolysis 40, 217–231 (1997)CrossRef
94.
go back to reference M. Thirumal, N.K. Singha, D. Khastgir, B. Manjunath, Y. Naik, Halogen-free flame-retardant rigid polyurethane foams: effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J. Appl. Polym. Sci. 116, 2260–2268 (2010) M. Thirumal, N.K. Singha, D. Khastgir, B. Manjunath, Y. Naik, Halogen-free flame-retardant rigid polyurethane foams: effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J. Appl. Polym. Sci. 116, 2260–2268 (2010)
95.
go back to reference E.N. Peters, Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J. Appl. Polym. Sci. 24, 1457–1464 (1979)CrossRef E.N. Peters, Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J. Appl. Polym. Sci. 24, 1457–1464 (1979)CrossRef
96.
go back to reference R.P. Lattimer, W.J. Kroenke, The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly(vinyl chloride). J. Appl. Polym. Sci. 26, 1191–1210 (1981)CrossRef R.P. Lattimer, W.J. Kroenke, The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly(vinyl chloride). J. Appl. Polym. Sci. 26, 1191–1210 (1981)CrossRef
97.
go back to reference B.C. Levin, New research avenues in toxicology: 7-gas N-Gas Model, toxicant suppressants, and genetic toxicology. Toxicology 115, 89–106 (1996)PubMedCrossRef B.C. Levin, New research avenues in toxicology: 7-gas N-Gas Model, toxicant suppressants, and genetic toxicology. Toxicology 115, 89–106 (1996)PubMedCrossRef
98.
go back to reference B. Levin, M. Paabo, J. Gurman, H. Clark, M. Yoklavich, Further studies of the toxicological effects of different time exposures to the individual and combined fire gases: carbon monoxide, hydrogen cyanide, carbon dioxide, and reduced oxygen, in: Polyurethane ’88, Proceedings of the 31st Society of Plastics Meeting, 1988, pp. 249–252 B. Levin, M. Paabo, J. Gurman, H. Clark, M. Yoklavich, Further studies of the toxicological effects of different time exposures to the individual and combined fire gases: carbon monoxide, hydrogen cyanide, carbon dioxide, and reduced oxygen, in: Polyurethane ’88, Proceedings of the 31st Society of Plastics Meeting, 1988, pp. 249–252
99.
go back to reference H. Doerge, M. Wismer, A new approach to the preparation of rigid urethane foams having reduced flame spread and smoke levels. J. Cell. Plast. 8, 311–317 (1972)CrossRef H. Doerge, M. Wismer, A new approach to the preparation of rigid urethane foams having reduced flame spread and smoke levels. J. Cell. Plast. 8, 311–317 (1972)CrossRef
100.
go back to reference H. Singh, A. Jain, Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J. Appl. Polym. Sci. 111, 1115–1143 (2009)CrossRef H. Singh, A. Jain, Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J. Appl. Polym. Sci. 111, 1115–1143 (2009)CrossRef
101.
go back to reference S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, F. Poutch, G. Camino, B. Eling, C. Lindsay, T. Roels, Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. J. Fire Sci. 18, 456–482 (2000)CrossRef S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, F. Poutch, G. Camino, B. Eling, C. Lindsay, T. Roels, Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. J. Fire Sci. 18, 456–482 (2000)CrossRef
102.
go back to reference S.D. Jiang, Z.M. Bai, G. Tang, Y. Hu, L. Song, Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind. Eng. Chem. Res. 53, 6708–6717 (2014)CrossRef S.D. Jiang, Z.M. Bai, G. Tang, Y. Hu, L. Song, Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind. Eng. Chem. Res. 53, 6708–6717 (2014)CrossRef
103.
go back to reference A. Szymczyk, E. Senderek, J. Nastalczyk, Z. Roslaniec, New multiblock poly(ether-ester)s based on poly(trimethylene terephthalate) as rigid segments. Eur. Polym. J. 44, 436–443 (2008)CrossRef A. Szymczyk, E. Senderek, J. Nastalczyk, Z. Roslaniec, New multiblock poly(ether-ester)s based on poly(trimethylene terephthalate) as rigid segments. Eur. Polym. J. 44, 436–443 (2008)CrossRef
104.
go back to reference G.Z. Papageorgiou, A.A. Vassiliou, V.D. Karavelidis, A. Koumbis, N.D. Bikiaris, Novel poly(propylene terephthalate-co-succinate) random copolymers: synthesis, solid structure, and enzymatic degradation study. Macromolecules 41, 1675–1684 (2008)CrossRef G.Z. Papageorgiou, A.A. Vassiliou, V.D. Karavelidis, A. Koumbis, N.D. Bikiaris, Novel poly(propylene terephthalate-co-succinate) random copolymers: synthesis, solid structure, and enzymatic degradation study. Macromolecules 41, 1675–1684 (2008)CrossRef
105.
go back to reference T. Kashiwagi, J.R. Shields, R.H. Harris, R.D. Davis, Flame-retardant mechanism of silica: Effects of resin molecular weight. J. Appl. Polym. Sci. 87, 1541–1553 (2003)CrossRef T. Kashiwagi, J.R. Shields, R.H. Harris, R.D. Davis, Flame-retardant mechanism of silica: Effects of resin molecular weight. J. Appl. Polym. Sci. 87, 1541–1553 (2003)CrossRef
106.
go back to reference R.W. Stackman, Phosphorus based additives for flame retardant polyester. 2. Polymeric phosphorus esters. Ind. Eng. Chem. Prod. Res. Dev. 21, 332–336 (1982)CrossRef R.W. Stackman, Phosphorus based additives for flame retardant polyester. 2. Polymeric phosphorus esters. Ind. Eng. Chem. Prod. Res. Dev. 21, 332–336 (1982)CrossRef
107.
go back to reference W. El Khatib, B. Youssef, C. Bunel, B. Mortaigne, Fireproofing of polyurethane elastomers by reactive organophosphonates. Polym. Int. 52, 146–152 (2003)CrossRef W. El Khatib, B. Youssef, C. Bunel, B. Mortaigne, Fireproofing of polyurethane elastomers by reactive organophosphonates. Polym. Int. 52, 146–152 (2003)CrossRef
108.
go back to reference X. Chen, Y. Hu, L. Song, Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym. Eng. Sci. 48, 116–123 (2008)CrossRef X. Chen, Y. Hu, L. Song, Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym. Eng. Sci. 48, 116–123 (2008)CrossRef
109.
go back to reference M. Jimenez, S. Duquesne, S. Bourbigot, Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim. Acta 449, 16–26 (2006)CrossRef M. Jimenez, S. Duquesne, S. Bourbigot, Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim. Acta 449, 16–26 (2006)CrossRef
110.
go back to reference G.C. Zhang, J.W. Gu, S.L. Dong, Q.Y. Zhang, J. Kong, Y.S. Tang, Y. Li, Preparation and mechanism analysis of intumescent flame-retardant coatings. J. Mater. Eng. 1, 47–52 (2006) G.C. Zhang, J.W. Gu, S.L. Dong, Q.Y. Zhang, J. Kong, Y.S. Tang, Y. Li, Preparation and mechanism analysis of intumescent flame-retardant coatings. J. Mater. Eng. 1, 47–52 (2006)
111.
go back to reference M.M. Velencoso, M.J. Ramos, R. Klein, A. De Lucas, J.F. Rodriguez, Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym. Degrad. Stab. 101, 40–51 (2014)CrossRef M.M. Velencoso, M.J. Ramos, R. Klein, A. De Lucas, J.F. Rodriguez, Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym. Degrad. Stab. 101, 40–51 (2014)CrossRef
112.
go back to reference R. Patel, H. Patel, Property modification of conventional castor oil based polyurethane using novel flame retardant polyurethanes. Pragna J. Pure Appl. Sci. 15, 66–76 (2007) R. Patel, H. Patel, Property modification of conventional castor oil based polyurethane using novel flame retardant polyurethanes. Pragna J. Pure Appl. Sci. 15, 66–76 (2007)
113.
go back to reference A. Kaushik, P. Singh, Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy. Int. J. Polym. Anal. Charact. 10, 373–386 (2005)CrossRef A. Kaushik, P. Singh, Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy. Int. J. Polym. Anal. Charact. 10, 373–386 (2005)CrossRef
114.
go back to reference M. Kimura, G. Salee, R.S. Porter, Blends of poly (ethylene terephthalate) and a polyarylate before and after transesterification. J. Appl. Polym. Sci. 29, 1629–1638 (1984)CrossRef M. Kimura, G. Salee, R.S. Porter, Blends of poly (ethylene terephthalate) and a polyarylate before and after transesterification. J. Appl. Polym. Sci. 29, 1629–1638 (1984)CrossRef
115.
go back to reference K. Dai, L. Song, S. Jiang, B. Yu, W. Yang, R.K. Yuen, Y. Hu, Unsaturated polyester resins modified with phosphorus-containing groups: effects on thermal properties and flammability. Polym. Degrad. Stab. 98, 2033–2040 (2013)CrossRef K. Dai, L. Song, S. Jiang, B. Yu, W. Yang, R.K. Yuen, Y. Hu, Unsaturated polyester resins modified with phosphorus-containing groups: effects on thermal properties and flammability. Polym. Degrad. Stab. 98, 2033–2040 (2013)CrossRef
116.
go back to reference R.H. Patel, M.D. Shah, H.B. Patel, Synthesis and characterization of structurally modified polyurethanes based on castor oil and phosphorus-containing polyol for flame-retardant coatings. Int. J. Polym. Anal. Charact. 16, 107–117 (2011)CrossRef R.H. Patel, M.D. Shah, H.B. Patel, Synthesis and characterization of structurally modified polyurethanes based on castor oil and phosphorus-containing polyol for flame-retardant coatings. Int. J. Polym. Anal. Charact. 16, 107–117 (2011)CrossRef
117.
go back to reference R. Patel, H. Patel, Studies on flame retardant polyurethanes based on bisphenol-A monophosphate. Pragna J. Pure Appl. Sci. 14, 70–78 (2006) R. Patel, H. Patel, Studies on flame retardant polyurethanes based on bisphenol-A monophosphate. Pragna J. Pure Appl. Sci. 14, 70–78 (2006)
118.
go back to reference R.H. Patel, K.S. Patel, Synthesis and characterization of polyesterurethanes and their applications to flame-retardant coatings. Int. J. Polym. Anal. Charact. 17, 85–92 (2012)CrossRef R.H. Patel, K.S. Patel, Synthesis and characterization of polyesterurethanes and their applications to flame-retardant coatings. Int. J. Polym. Anal. Charact. 17, 85–92 (2012)CrossRef
119.
go back to reference R. Patel, M. Shah, H. Patel, Synthesis and characterization of structurally modified polyurethanes based on castor oil and phosphorus-containing polyol for flame-retardant coatings. Int. J. Polym. Charact. 16, 107–117 (2011)CrossRef R. Patel, M. Shah, H. Patel, Synthesis and characterization of structurally modified polyurethanes based on castor oil and phosphorus-containing polyol for flame-retardant coatings. Int. J. Polym. Charact. 16, 107–117 (2011)CrossRef
120.
go back to reference L. Zhang, M. Zhang, L. Hu, Y. Zhou, Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crops Prod. 52, 380–388 (2014)CrossRef L. Zhang, M. Zhang, L. Hu, Y. Zhou, Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crops Prod. 52, 380–388 (2014)CrossRef
121.
go back to reference H. Ding, J. Wang, C. Wang, F. Chu, Synthesis of a novel phosphorus and nitrogen-containing bio-based polyols and its application in flame retardant polyurethane sealant. Polym. Degrad. Stab. 124, 43–50 (2016)CrossRef H. Ding, J. Wang, C. Wang, F. Chu, Synthesis of a novel phosphorus and nitrogen-containing bio-based polyols and its application in flame retardant polyurethane sealant. Polym. Degrad. Stab. 124, 43–50 (2016)CrossRef
122.
go back to reference A. Szymczyk, J. Nastalczyk, R. Sablong, Z. Roslaniec, The influence of soft segment length on structure and properties of poly (trimethylene terephthalate)-block-poly (tetramethylene oxide) segmented random copolymers. Polym. Adv. Technol. 22, 72–83 (2011)CrossRef A. Szymczyk, J. Nastalczyk, R. Sablong, Z. Roslaniec, The influence of soft segment length on structure and properties of poly (trimethylene terephthalate)-block-poly (tetramethylene oxide) segmented random copolymers. Polym. Adv. Technol. 22, 72–83 (2011)CrossRef
123.
go back to reference L.F. Wang, Effect of soft segment length on the thermal behaviors of fluorinated polyurethanes. Eur. Polym. J. 41, 293–301 (2005)CrossRef L.F. Wang, Effect of soft segment length on the thermal behaviors of fluorinated polyurethanes. Eur. Polym. J. 41, 293–301 (2005)CrossRef
124.
go back to reference L. Rueda-Larraz, B.F. d’Arlas, A. Tercjak, A. Ribes, I. Mondragon, A. Eceiza, Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur. Polym. J. 45, 2096–2109 (2009)CrossRef L. Rueda-Larraz, B.F. d’Arlas, A. Tercjak, A. Ribes, I. Mondragon, A. Eceiza, Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur. Polym. J. 45, 2096–2109 (2009)CrossRef
125.
go back to reference J.A. Koutsky, N. Hien, S.L. Cooper, Some results on electron microscope investigations of polyether‐urethane and polyester‐urethane block copolymers. J. Polym. Sci. Part C Polym. Lett. 8, 353–359 (1970)CrossRef J.A. Koutsky, N. Hien, S.L. Cooper, Some results on electron microscope investigations of polyether‐urethane and polyester‐urethane block copolymers. J. Polym. Sci. Part C Polym. Lett. 8, 353–359 (1970)CrossRef
126.
go back to reference M. Xu, W. MacKnight, C. Chen-Tsai, E. Thomas, Structure and morphology of segmented polyurethanes: 4. Domain structures of different scales and the composition heterogeneity of the polymers. Polymer 28, 2183–2189 (1987)CrossRef M. Xu, W. MacKnight, C. Chen-Tsai, E. Thomas, Structure and morphology of segmented polyurethanes: 4. Domain structures of different scales and the composition heterogeneity of the polymers. Polymer 28, 2183–2189 (1987)CrossRef
127.
go back to reference M. Serrano, W.J. MacKnight, E.L. Thomas, J.M. Ottino, Transport-morphology relationships in segmented polybutadiene polyurethanes: 1. Experimental results. Polymer 28, 1667–1673 (1987)CrossRef M. Serrano, W.J. MacKnight, E.L. Thomas, J.M. Ottino, Transport-morphology relationships in segmented polybutadiene polyurethanes: 1. Experimental results. Polymer 28, 1667–1673 (1987)CrossRef
128.
go back to reference C. Kloock, Synthesis of potential phosphorus-nitrogen containing flame retardants. Honors Thesis, University of Dayton, 2015 C. Kloock, Synthesis of potential phosphorus-nitrogen containing flame retardants. Honors Thesis, University of Dayton, 2015
129.
go back to reference A. Toldy, G. Harakály, B. Szolnoki, E. Zimonyi, G. Marosi, Flame retardancy of thermoplastics polyurethanes. Polym. Degrad. Stab. 97, 2524–2530 (2012)CrossRef A. Toldy, G. Harakály, B. Szolnoki, E. Zimonyi, G. Marosi, Flame retardancy of thermoplastics polyurethanes. Polym. Degrad. Stab. 97, 2524–2530 (2012)CrossRef
Metadata
Title
Flame-Retardant Polyurethanes
Authors
Suprakas Sinha Ray
Malkappa Kuruma
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-35491-6_5

Premium Partners